Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/17829

Title: An ice-sheet scale comparison of eskers with modelled subglacial drainage routes
Authors: Livingstone, Stephen J.
Storrar, R.
Hillier, John K.
Stokes, C.R.
Clark, C.D.
Tarasov, L.
Issue Date: 2015
Publisher: © Elsevier
Citation: LIVINGSTONE, S.J. ... et al, 2015. An ice-sheet scale comparison of eskers with modelled subglacial drainage routes. Geomorphology, 246, pp.104-112. .
Abstract: Eskers record a time-integrated signature of channelised meltwater drainage during deglaciation providing vital information on the nature and evolution of subglacial drainage. In this paper, we compare the spatial pattern of eskers beneath the former Laurentide Ice Sheet with subglacial drainage routes diagnosed at discrete time intervals from the results of a numerical icesheet model. Perhaps surprisingly, we show that eskers predominantly occur in regions where modelled subglacial water flow is low. Eskers and modelled subglacial drainage routes were found to typically match for lengths <10 km, and most eskers show a better agreement with the routes close to the ice margin just prior to deglaciation. This supports a time-transgressive esker pattern, with formation in short (<10 km) segments of conduit close behind a retreating ice margin, and probably associated with thin, stagnant or sluggish ice. Esker forming conduits were probably dominated by supraglacially fed meltwater inputs. We also show that modelled subglacial drainage routes containing the largest concentrations of meltwater show a close correlation with palaeo-ice stream locations. The paucity of eskers along the terrestrial portion of these palaeo-ice streams and meltwater routes is probably due to the prevalence of distributed drainage and the high erosion potential of fast-flowing ice.
Description: This paper was accepted for publication in the journal Geomorphology and the definitive published version is available at http://dx.doi.org/10.1016/j.geomorph.2015.06.016
Version: Accepted for publication
DOI: 10.1016/j.geomorph.2015.06.016
URI: https://dspace.lboro.ac.uk/2134/17829
Publisher Link: http://dx.doi.org/10.1016/j.geomorph.2015.06.016
ISSN: 1872-695X
Appears in Collections:Published Articles (Geography)

Files associated with this item:

File Description SizeFormat
EskerModellingv4_ACCEPTED.pdfAccepted version2.33 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.