Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/17923

Title: Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter
Authors: Casasola, R.
Thomas, Noreen L.
Trybala, Anna
Georgiadou, Stella
Keywords: Chain entanglements
Issue Date: 2014
Publisher: © Elsevier Ltd
Citation: CASASOLA, R. ... et al, 2014. Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer, 55 (18), pp. 4728 - 4737.
Abstract: The selection of an appropriate non-hazardous solvent or solvent system is essential to determine the rheological properties and electrospinnability of the solution, the productivity, and the morphology of nanofibres. In this study, poly lactic acid (PLA) solutions were prepared in various pure solvents and binary-solvent systems to investigate the effect of different solution properties on nanofibre morphology and diameter. Viscosity, conductivity and surface tension of each solution were measured. Nanofibre morphology was observed by scanning electron microscopy (SEM). Of all the solvent systems used acetone/dimethylformamide gave the highest fibre productivity and finest defect-free nanofibres. Therefore this solvent system was studied in more detail, varying the solvent ratio. Also the polymer concentration in this solvent system was varied to investigate the effect on nanofibre morphology and solution properties. Morphological investigations were done in correlation with rheological measurements: beaded nanofibrous structures were collected from solutions with concentration around the critical chain entanglement concentration (Ce), while defect-free nanofibres were produced when the concentration was increased to about twice the entanglement concentration. Further investigation of the effect of the PLA concentration on the elastic (G′) and the plastic (G″) moduli showed a sudden increase of the elastic moduli (G′) at the critical chain entanglement concentration. The results showed that the solvent properties, boiling point, viscosity, conductivity and surface tension, have a significant effect on process productivity, morphology and diameter distribution of the PLA nanofibres.
Description: This paper was accepted for publication in the journal, Polymer [© Elsevier Ltd]. The definitive version is available at: http://dx.doi.org/10.1016/j.polymer.2014.06.032
Version: Accepted for publication
DOI: 10.1016/j.polymer.2014.06.032
URI: https://dspace.lboro.ac.uk/2134/17923
Publisher Link: http://dx.doi.org/10.1016/j.polymer.2014.06.032
ISSN: 0032-3861
Appears in Collections:Published Articles (Materials)

Files associated with this item:

File Description SizeFormat
Final Revised Manuscript.pdfAccepted version912.64 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.