Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/18065

Title: Video content analysis for intelligent forensics
Authors: Fraz, Muhammad
Keywords: Video forensic
Human detection
Colour Constancy
Vehicle make and model recognition
Text detection
Text recognition
Fisher vector
Issue Date: 2014
Publisher: © Muhammad Fraz
Abstract: The networks of surveillance cameras installed in public places and private territories continuously record video data with the aim of detecting and preventing unlawful activities. This enhances the importance of video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis. In this thesis, the primary focus is on four key aspects of video content analysis, namely; 1. Moving object detection and recognition, 2. Correction of colours in the video frames and recognition of colours of moving objects, 3. Make and model recognition of vehicles and identification of their type, 4. Detection and recognition of text information in outdoor scenes. To address the first issue, a framework is presented in the first part of the thesis that efficiently detects and recognizes moving objects in videos. The framework targets the problem of object detection in the presence of complex background. The object detection part of the framework relies on background modelling technique and a novel post processing step where the contours of the foreground regions (i.e. moving object) are refined by the classification of edge segments as belonging either to the background or to the foreground region. Further, a novel feature descriptor is devised for the classification of moving objects into humans, vehicles and background. The proposed feature descriptor captures the texture information present in the silhouette of foreground objects. To address the second issue, a framework for the correction and recognition of true colours of objects in videos is presented with novel noise reduction, colour enhancement and colour recognition stages. The colour recognition stage makes use of temporal information to reliably recognize the true colours of moving objects in multiple frames. The proposed framework is specifically designed to perform robustly on videos that have poor quality because of surrounding illumination, camera sensor imperfection and artefacts due to high compression. In the third part of the thesis, a framework for vehicle make and model recognition and type identification is presented. As a part of this work, a novel feature representation technique for distinctive representation of vehicle images has emerged. The feature representation technique uses dense feature description and mid-level feature encoding scheme to capture the texture in the frontal view of the vehicles. The proposed method is insensitive to minor in-plane rotation and skew within the image. The capability of the proposed framework can be enhanced to any number of vehicle classes without re-training. Another important contribution of this work is the publication of a comprehensive up to date dataset of vehicle images to support future research in this domain. The problem of text detection and recognition in images is addressed in the last part of the thesis. A novel technique is proposed that exploits the colour information in the image for the identification of text regions. Apart from detection, the colour information is also used to segment characters from the words. The recognition of identified characters is performed using shape features and supervised learning. Finally, a lexicon based alignment procedure is adopted to finalize the recognition of strings present in word images. Extensive experiments have been conducted on benchmark datasets to analyse the performance of proposed algorithms. The results show that the proposed moving object detection and recognition technique superseded well-know baseline techniques. The proposed framework for the correction and recognition of object colours in video frames achieved all the aforementioned goals. The performance analysis of the vehicle make and model recognition framework on multiple datasets has shown the strength and reliability of the technique when used within various scenarios. Finally, the experimental results for the text detection and recognition framework on benchmark datasets have revealed the potential of the proposed scheme for accurate detection and recognition of text in the wild.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
Sponsor: Department of Computer Science, Loughborough University
URI: https://dspace.lboro.ac.uk/2134/18065
Appears in Collections:PhD Theses (Computer Science)

Files associated with this item:

File Description SizeFormat
Thesis-2014-Fraz.pdf70.14 MBAdobe PDFView/Open
Form-2014-Fraz.pdf479.84 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.