Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/18236

Title: The cone conjecture for abelian varieties
Authors: Prendergast-Smith, Artie
Issue Date: 2012
Publisher: University of Tokyo
Citation: PRENDERGAST-SMITH, A., 2012. The cone conjecture for abelian varieties. Journal of Mathematical Sciences (University of Tokyo), 19 (2), pp. 243 - 261
Abstract: The purpose of this paper is to write down a complete proof of the Morrison-Kawamata cone conjecture for abelian varieties. The conjecture predicts, roughly speaking, that for a large class of varieties (including all smooth varieties with numerically trivial canonical bundle) the automorphism group acts on the nef cone with rational polyhedral fundamental domain. (See Section 1 for a precise statement.) The conjecture has been proved in dimension 2 by Sterk-Looijenga, Namikawa, Kawamata, and Totaro [Ste85, Nam85, Kaw97, Tot 10], but in higher dimensions little is known in general. Abelian varieties provide one setting in which the conjecture is tractable, because in this case the nef cone and the automorphism group can both be viewed as living inside a larger object, namely the real endomorphism algebra. In this paper we combine this fact with known results for arithmetic group actions on convex cones to produce a proof of the conjecture for abelian varieties.
Description: This article was published in the Journal of Mathematical Sciences [University of Tokyo] and is available here with the kind permission of the publisher.
Version: Submitted for publication
URI: https://dspace.lboro.ac.uk/2134/18236
Publisher Link: http://www.ms.u-tokyo.ac.jp/journal/
ISSN: 1340-5705
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
abelain.pdfSubmitted version350.79 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.