Loughborough University
Browse
CEJ-D-15-01498.pdf (2.79 MB)

Production of polymeric nanoparticles by micromixing in a co-flow microfluidic glass capillary device

Download (2.79 MB)
journal contribution
posted on 2015-07-24, 08:39 authored by Rahimah Othman, Goran VladisavljevicGoran Vladisavljevic, Hemaka BandulasenaHemaka Bandulasena, Zoltan NagyZoltan Nagy
Synthetic polymeric biodegradable nanoparticles were produced by micromixing combined with nanoprecipitation in a co-flow glass capillary device consisted of coaxial assembly of glass capillaries, fabricated by aligning a tapered-end round capillary inside a square capillary with 1 mm internal dimension. Micromixing of water and organic phase (1 wt% polylactide or polycaprolactone dissolved in tetrahydrofuran) was modelled using a commercial software package Comsol Multiphysics™ and experimentally investigated using dynamic light scattering, Nanoparticle Tracking Analysis (NTA) and in situ microscopic observation. The organic phase was injected through a nozzle with a diameter of 60 μm at the organic-to-aqueous flow-rate ratios ranging from 1.5 to 10. The locations at which the nanoparticles would form were determined by using the solubility criteria of the polymer and the concentration profiles found by numerical modelling. The convective flux of the polymer in the radial direction was 2–3 orders of magnitude higher than the diffusive flux of the polymer; hence responsible for mixing the streams. The convective flux near the orifice was 3–4 orders of magnitudes higher than at the end of the computational domain. A maximum convective flux of 0.115 kg m−2 s−1 was found for polycaprolactone at the cloud point for the lowest flow rate ratio investigated. The numerical results were consistent with the experimental observations in terms of flow patterns and mean particle size. Narrower particle size distributions and smaller mean particle sizes were obtained at the higher aqueous-to-organic flow-rate ratios.

Funding

ZK Nagy would like to also acknowledge financial support provided by the European Research Council Grant No. [280106-CrySys]

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Chemical Engineering Journal

Volume

280

Pages

316 - 329

Citation

OTHMAN, R., ... et al., 2015. Production of polymeric nanoparticles by micromixing in a co-flow microfluidic glass capillary device. Chemical Engineering Journal, 280, pp. 316 - 329

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

This paper was accepted for publication in the journal Chemical Engineering Journal and the definitive published version is available at http://dx.doi.org/10.1016/j.cej.2015.05.083.

ISSN

0300-9467

Language

  • en