Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/18550

Title: Geoelectrical characterization of carbonate and silicate porous media in the presence of supercritical CO2-water flow
Authors: Abidoye, Lugman K.
Das, Diganta Bhusan
Keywords: Electrical properties
Permeability and porosity
High-pressure behaviour
Issue Date: 2015
Publisher: Oxford University Press (© the authors)
Citation: ABIDOYE, L.K. and DAS, D.B., 2015. Geoelectrical characterization of carbonate and silicate porous media in the presence of supercritical CO2-water flow. Geophysical Journal International, 203 (1), pp. 79-91.
Abstract: The relative permittivity (εr) and the electrical conductivity (σ) of porous media are known to be functions of water saturation (S). As such, their measurements can be useful in effective characterisations and monitoring of geological carbon sequestration using geoelectrical measurement techniques. In this work, the effects of pressure, temperature and salt concentration on bulk εr–S and σ–S relationships were investigated for carbonate (limestone) and silicate porous media (both unconsolidated domains) under dynamic and quasi-static supercritical CO2 (scCO2)-brine/water flow. In the silica sand sample, the bulk εr (εb) for scCO2–water decreases as the temperature increases. On the contrary, slight increase was seen in the εb with temperature in the carbonate sample for the scCO2-water system. These trends are more conspicuous at high water saturation. The εb–S curves for the scCO2–water flow in the silica sand also show clear dependency on the domain pressure, where εb increases as the domain pressure increases. Furthermore, the bulk σ (σb), at any particular saturation for the scCO2-brine system rises as the temperature increases with more significant increase found at very high water saturation. Both εb and σb values are found to be greater in the limestone than silica sand porous samples for similar porosity values. Based on different injection rates investigated, we do not find significant dynamic effects in the εb–S and σb–S relationships for the scCO2-brine/water system. As such, geoelectrical characteristics can be taken as reliable in the monitoring of two-phase flow system in the porous media. It can be inferred from the results that the geoelectrical techniques are highly dependent on water saturation. This dependence is more conspicuous at higher water saturation. Different mathematical models examined show their reliability at different water saturation ranges. The polynomial fit developed in this work takes into consideration the fluid pressure in the system as well as the initial bulk relative permittivity prior to the injection of CO2. The polynomial fit shows a good reliability in the prediction of the geo-electrical properties of the CO2–water–porous media system, especially at higher water saturation. In comparison, the mixing model from the literature shows more reliability in the prediction of similar property at lower water saturation.
Description: This article has been accepted for publication in Geophysical Journal International ©: 2015 The authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Sponsor: PhD studentship awarded to Mr Luqman Abidoye under the Petroleum Technology Development Fund (PTDF), Nigeria, to carry out the work in this paper is much appreciated.
Version: Published
DOI: 10.1093/gji/ggv283
URI: https://dspace.lboro.ac.uk/2134/18550
Publisher Link: http://dx.doi.org/10.1093/gji/ggv283
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
Das_Geo_Journal_Int.pdfPublished2.19 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.