Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/18917

Title: Thermodynamics of the classical spin-ice model with nearest neighbour interactions using the Wang-Landau algorithm
Authors: Ferreyra, M.V.
Giordano, G.
Borzi, R.A.
Betouras, Joseph J.
Grigera, S.A.
Keywords: Solid state and materials
Issue Date: 2015
Publisher: Springer / © The Authors
Citation: FERREYRA, M.V. ... et al., 2015. Thermodynamics of the classical spin-ice model with nearest neighbour interactions using the Wang-Landau algorithm. The European Physical Journal B, 89 (2), article 51.
Abstract: In this article we study the classical nearest-neighbour spin-ice model (nnSI) by means of Monte Carlo simulations, using the Wang-Landau algorithm. The nnSI describes several of the salient features of the spin-ice materials. Despite its simplicity it exhibits a remarkably rich behaviour. The model has been studied using a variety of techniques, thus it serves as an ideal benchmark to test the capabilities of the Wang Landau algorithm in magnetically frustrated systems. We study in detail the residual entropy of the nnSI and, by introducing an applied magnetic field in two different crystallographic directions ([111] and [100],) we explore the physics of the kagome-ice phase, the transition to full polarisation, and the three dimensional Kasteleyn transition. In the latter case, we discuss how additional constraints can be added to the Hamiltonian, by taking into account a selective choice of states in the partition function and, then, show how this choice leads to the realization of the ideal Kasteleyn transition in the system.
Description: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Version: Published
DOI: 10.1140/epjb/e2016-60781-7
URI: https://dspace.lboro.ac.uk/2134/18917
Publisher Link: http://dx.doi.org/10.1140/epjb/e2016-60781-7
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
spin-ice.pdfPublished version547.3 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.