Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/19117

Title: Simultaneous design and control framework for multi-segment multi-addition plug-flow crystallizer for anti-solvent crystallizations
Authors: Su, Qinglin
Rielly, Chris D.
Nagy, Zoltan K.
Issue Date: 2015
Publisher: © IEEE.
Citation: SU, Q., RIELLY, C.D. and NAGY, Z.K., 2015. Simultaneous design and control framework for multi-segment multi-addition plug-flow crystallizer for anti-solvent crystallizations. IN: Proceedings of the American Control Conference, Chicago, IL, 1st-3rd July, pp. 4276-4281.
Abstract: Tubular reactors, which are often assumed to behave as plug-flow reactors, have many applications in chemical reaction engineering, because of their narrow residence time distribution and ease of scaling-up. In the pharmaceutical industries, the requirements of fast development and scalable design have also made the tubular crystallizer a promising platform for continuous manufacturing and crystallization processes which are widely recognized as an emerging technology for pharmaceutical manufacturing which aims to replace conventional capital- and labor-intensive batch operations. However, the interaction of effects, such as supersaturation, seed loading, nucleation and crystal growth, tube configuration and mean residence time have not yet been fully understood and optimized, from a process systems engineering (PSE) perspective, to achieve the most promising product qualities, such as the crystal size distribution. In this study, standardized modules representing plug-flow crystallizer (PFC) segments are assembled into a multi-segment multi-addition plug-flow crystallizer (MSMA-PFC) to facilitate the versatile design and control of anti-solvent crystallization processes, in which the total number, locations, and distribution of anti-solvent addition are to be optimized. An anti-solvent crystallization system of paracetamol-acetone-water was used as an example to compare the performances of different crystallizer configurations operated under optimal design. It was noticed that the proposed design outperforms the previous designs in literature which considered equally-spaced anti-solvent additions. Furthermore, the possibility of replacing existing batch crystallizers by MSMA-PFC is also discussed.
Description: This is a conference paper [© 2014 IEEE]. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Version: Accepted for publication
DOI: 10.1109/ACC.2015.7172001
URI: https://dspace.lboro.ac.uk/2134/19117
Publisher Link: http://dx.doi.org/10.1109/ACC.2015.7172001
ISBN: 9781479986842
ISSN: 0743-1619
Appears in Collections:Conference Papers and Presentations (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
Manuscript to ACC 2015 v2.1.pdfAccepted version833.76 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.