Loughborough University
Browse
Manuscript to ACC 2015 v2.1.pdf (833.76 kB)

Simultaneous design and control framework for multi-segment multi-addition plug-flow crystallizer for anti-solvent crystallizations

Download (833.76 kB)
conference contribution
posted on 2015-10-26, 15:05 authored by Qinglin Su, Chris RiellyChris Rielly, Zoltan NagyZoltan Nagy
Tubular reactors, which are often assumed to behave as plug-flow reactors, have many applications in chemical reaction engineering, because of their narrow residence time distribution and ease of scaling-up. In the pharmaceutical industries, the requirements of fast development and scalable design have also made the tubular crystallizer a promising platform for continuous manufacturing and crystallization processes which are widely recognized as an emerging technology for pharmaceutical manufacturing which aims to replace conventional capital- and labor-intensive batch operations. However, the interaction of effects, such as supersaturation, seed loading, nucleation and crystal growth, tube configuration and mean residence time have not yet been fully understood and optimized, from a process systems engineering (PSE) perspective, to achieve the most promising product qualities, such as the crystal size distribution. In this study, standardized modules representing plug-flow crystallizer (PFC) segments are assembled into a multi-segment multi-addition plug-flow crystallizer (MSMA-PFC) to facilitate the versatile design and control of anti-solvent crystallization processes, in which the total number, locations, and distribution of anti-solvent addition are to be optimized. An anti-solvent crystallization system of paracetamol-acetone-water was used as an example to compare the performances of different crystallizer configurations operated under optimal design. It was noticed that the proposed design outperforms the previous designs in literature which considered equally-spaced anti-solvent additions. Furthermore, the possibility of replacing existing batch crystallizers by MSMA-PFC is also discussed.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Proceedings of the American Control Conference

Volume

2015-July

Pages

4276 - 4281

Citation

SU, Q., RIELLY, C.D. and NAGY, Z.K., 2015. Simultaneous design and control framework for multi-segment multi-addition plug-flow crystallizer for anti-solvent crystallizations. IN: Proceedings of the American Control Conference, Chicago, IL, 1st-3rd July, pp. 4276-4281.

Publisher

© IEEE.

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015

Notes

This is a conference paper [© 2014 IEEE]. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ISBN

9781479986842

ISSN

0743-1619

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC