Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/19279

Title: Exploring the improvement of human cell cryopreservation
Authors: Morris, Timothy J.
Keywords: Cryopreservation
Mesenchymal stem cells
Human platelet lysate
Cell therapy
Process improvement
Issue Date: 2015
Publisher: © Timothy James Morris
Abstract: Regenerative medicine is an emerging technology and with hundreds of cell therapies currently in clinical trials there is a need to expand the limited knowledge related to their storage, shipment and preservation. The most widely used medium for human cell cryopreservation is 10%wt dimethyl sulfoxide (DMSO) in serum. However given its potential toxicity, DMSO usage is a key issue in cryopreservation. Methods specify the need to reduce cell exposure time to DMSO above 0°C as much as possible but the maximum amount of time cells can be exposed to DMSO to prevent a detrimental effect needs to be clarified. There are also regulatory issues and concerns with the xenotoxicity, ethics and supply of the other core component in the standard cryomedia formulation: Foetal Bovine Serum (FBS). Developing a viable alternative to FBS is crucial. In cryobiology literature thawing appears poorly understood. A stable process is as vital as freezing to prevent injury to cells. Protocols are currently too vague for cell therapy regulation and need improvement. The time dependent DMSO cytotoxicity was evaluated by overexposing cells to DMSO during and/or after cryopreservation. A broad investigation found that after 1 hour overexposure post thaw viability of human mesenchymal stem cells (hMSCs) was reduced from 96.3±0.6% to 74.1±4.0% and the co-expression of five key hMSC markers was changed from 97.9±1.3% to 68.3±2.6%. This significant change could cause indicate a change in product efficacy and affect patient health, to prevent this, DMSO exposure must be kept to below 1 hour. A range of alternative vehicle solutions were screened and human platelet lysate (hPL) investigated as an alternative. In depth experimentation with hPL as a cryopreservation vehicle solution and culture supplement (in place of FBS) found it to be a worthy, statistically similar alternative. With no xenological or ethical concerns, lower costs than other serum-free alternatives hPL could allow for a move away from xenological components. A heat transfer model was developed and determined that 720J is required to thaw a vial. Using the heat transfer model and additional factors such as pre-thaw stabilisation and on thaw dilution, a two-stage experiment found that the current standard process (warming in a 37°C waterbath) within the current paradigm of a 1.8mL cryovial is optimal but further work is required to define the process for scaled-up product.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
Sponsor: EPSRC
URI: https://dspace.lboro.ac.uk/2134/19279
Appears in Collections:PhD Theses (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2015-Morris.pdf36.81 MBAdobe PDFView/Open
Form-2015-Morris.pdf745.71 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.