Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/19385

Title: A mathematical model of the growth of uterine myomas
Authors: Chen, C.Y.
Ward, John P.
Keywords: Uterine myoma
Continuum model
Stress-strain relation
Vascular flow
Numerical solution
Perturbation analysis
Issue Date: 2014
Publisher: © Springer US
Citation: CHEN, C.Y. and WARD, J.P., 2014. A mathematical model of the growth of uterine myomas. Bulletin of Mathematical Biology, 76 (12), pp.3088-3121.
Abstract: Uterine myomas or fibroids are common, benign smooth muscle tumours that can grow to 10 cm or more in diameter and are routinely removed surgically. They are typically slow- growing, well-vascularised, spherical tumours that, on a macro-scale, are a structurally uniform, hard elastic material. We present a multi-phase mathematical model of a fully vascularised myoma growing within a surrounding elastic tissue. Adopting a continuum approach, the model assumes the conservation of mass and momentum of four phases, namely cells/collagen, extracellular fluid, arterial and venous phases. The cell/collagen phase is treated as a poro-elastic material, based on a linear stress–strain relationship, and Darcy’s law is applied to describe flow in the extracellular fluid and the two vascular phases. The supply of extracellular fluid is dependent on the capillary flow rate and mean capillary pressure expressed in terms of the arterial and venous pressures. Cell growth and division is limited to the myoma domain and dependent on the local stress in the material. The resulting model consists of a system of nonlinear partial differential equations with two moving boundaries. Numerical solutions of the model successfully reproduce qualitatively the clinically observed three-phase “fast–slow–fast” growth profile that is typical for myomas. The results suggest that this growth profile requires stress-induced resistance to growth by the surrounding tissue and a switch-like cell growth response to stress. Analysis of large-time solutions reveal that while there is a functioning vasculature throughout the myoma, exponential growth results, otherwise power-law growth is predicted. An extensive survey of the effect of parameters on model solutions is also presented, and in particular, the enhanced growth caused by factors such as oestrogen is predicted by the model.
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s11538-014-0045-5
Version: Accepted for publication
DOI: 10.1007/s11538-014-0045-5
URI: https://dspace.lboro.ac.uk/2134/19385
Publisher Link: http://dx.doi.org/10.1007/s11538-014-0045-5
ISSN: 0092-8240
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
14_Myomas_revised.pdfAccepted version906.48 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.