Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/19511

Title: Improving the airtightness in an existing UK dwelling: the challenges, the measures and their effectiveness
Authors: Gillott, Mark
Loveday, Dennis L.
White, J.
Wood, C.J.
Chmutina, Ksenia
Vadodaria, Keyur
Keywords: Airtightness
Existing dwellings
Energy efficiency
Issue Date: 2016
Publisher: © Elsevier
Citation: GILLOTT, M. ... et al, 2016. Improving the airtightness in an existing UK dwelling: the challenges, the measures and their effectiveness. Building and Environment, 95, pp. 227 - 239.
Abstract: Air infiltration, occurring through gaps in the building envelope, can contribute up to one third of total heat losses associated with older UK dwellings [1]. Therefore, reducing the rate of air leakage (i.e. improving air ‘tightness’) can have a positive effect in terms of decreasing space heating requirements. This study presents an investigation of the effectiveness of airtightness measures applied in a retrofit context to a UK dwelling. A phased programme of refurbishment work was undertaken to a test dwelling at the University of Nottingham campus, UK. Evaluation techniques, including building energy modelling (SAP 2009), air pressurisation tests and thermal imaging, were performed. The study demonstrates that the use of conventional draught-proofing measures can achieve a reduction in air permeability of over 30% when compared with the house base case value of 15.57 m3/(h.m2) @ 50 Pa. This reduction was only achievable with close attention to installation detail. Further measures of service penetration and floor sealing enabled the air permeability to be reduced to as low as 4.74 m3/(h m2) @ 50 Pa. Modelling of the test dwelling predicted an initial space heating supply energy requirement of 32,373 kWh, which was reduced to 23,197 kWh by a combination of the air tightness measures, insulation, and system (boiler and ventilation) improvements. Air tightness measures alone contributed to approximately 9% of the predicted total reduction, half of which was due to relatively straight-forward draught-proofing. Other more advanced air tightness measures were considerably more expensive, though cheaper approaches to their application could help reduce payback times.
Description: This paper was accepted for publication in the journal Building and Environment and the definitive published version is available at http://dx.doi.org/10.1016/j.buildenv.2015.08.017
Sponsor: This work forms part of the E.ON funded Retrofit Research House Project and the CALEBRE Project which is funded by the Research Councils UK EP/G000387/1 Energy Programme and E.ON, to whom the authors express their gratitude.
Version: Accepted for publication
DOI: 10.1016/j.buildenv.2015.08.017
URI: https://dspace.lboro.ac.uk/2134/19511
Publisher Link: http://dx.doi.org/10.1016/j.buildenv.2015.08.017
ISSN: 0360-1323
Appears in Collections:Published Articles (Architecture, Building and Civil Engineering)

Files associated with this item:

File Description SizeFormat
Improving the Airtightness in an existing UK Dwelling The Challenges, the Measures and their Effectiveness Oct 2015.pdfAccepted version499.01 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.