Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/19624

Title: Automated freeform assembly of threaded fasteners
Authors: Dharmaraj, Karthick
Keywords: Freeform assembly
Automated fastener assembly
Machine vision
3D object identification
Issue Date: 2015
Publisher: © Karthick Dharmaraj
Abstract: Over the past two decades, a major part of the manufacturing and assembly market has been driven by its customer requirements. Increasing customer demand for personalised products create the demand for smaller batch sizes, shorter production times, lower costs, and the flexibility to produce families of products - or different parts - with the same sets of equipment. Consequently, manufacturing companies have deployed various automation systems and production strategies to improve their resource efficiency and move towards right-first-time production. However, many of these automated systems, which are involved with robot-based, repeatable assembly automation, require component- specific fixtures for accurate positioning and extensive robot programming, to achieve flexibility in their production. Threaded fastening operations are widely used in assembly. In high-volume production, the fastening processes are commonly automated using jigs, fixtures, and semi-automated tools. This form of automation delivers reliable assembly results at the expense of flexibility and requires component variability to be adequately controlled. On the other hand, in low- volume, high- value manufacturing, fastening processes are typically carried out manually by skilled workers. This research is aimed at addressing the aforementioned issues by developing a freeform automated threaded fastener assembly system that uses 3D visual guidance. The proof-of-concept system developed focuses on picking up fasteners from clutter, identifying a hole feature in an imprecisely positioned target component and carry out torque-controlled fastening. This approach has achieved flexibility and adaptability without the use of dedicated fixtures and robot programming. This research also investigates and evaluates different 3D imaging technology to identify the suitable technology required for fastener assembly in a non-structured industrial environment. The proposed solution utilises the commercially available technologies to enhance the precision and speed of identification of components for assembly processes, thereby improving and validating the possibility of reliably implementing this solution for industrial applications. As a part of this research, a number of novel algorithms are developed to robustly identify assembly components located in a random environment by enhancing the existing methods and technologies within the domain of the fastening processes. A bolt identification algorithm was developed to identify bolts located in a random clutter by enhancing the existing surface-based matching algorithm. A novel hole feature identification algorithm was developed to detect threaded holes and identify its size and location in 3D. The developed bolt and feature identification algorithms are robust and has sub-millimetre accuracy required to perform successful fastener assembly in industrial conditions. In addition, the processing time required for these identification algorithms - to identify and localise bolts and hole features - is less than a second, thereby increasing the speed of fastener assembly.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
Sponsor: EPSRC
URI: https://dspace.lboro.ac.uk/2134/19624
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2015-Dharmaraj.pdf5.7 MBAdobe PDFView/Open
Form-2015-Dharmaraj.pdf928.39 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.