Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/20100

Title: Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current
Authors: Berdiyorov, G.R.
Savel'ev, Sergey
Kusmartsev, F.V.
Peeters, F.M.
Keywords: Solid state
Issue Date: 2015
Publisher: © The Author(s) . This article is published with open access at Springerlink.com
Citation: BERDIYOROV, G.R. ... et al., 2015. Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current. European Physical Journal B, November 2015, 88:286, 7pp.
Abstract: We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.
Description: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Sponsor: This work was supported by EU Marie Curie (Project No. 253057).
Version: Published
DOI: 10.1140/epjb/e2015-60628-9
URI: https://dspace.lboro.ac.uk/2134/20100
Publisher Link: http://dx.doi.org/10.1140/epjb/e2015-60628-9
ISSN: 1434-6028
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
2015-Golib-EPhys-JB.pdfPublished version1.35 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.