Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/20107

Title: Driving ergonomics for an elevated seat position in a light commercial vehicle
Authors: Smith, Jordan
Keywords: Automotive human factors
Driving ergonomics
Vehicle design
Driving posture
Seat discomfort
Issue Date: 2016
Publisher: © Jordan Thomas William Smith
Abstract: With more legislation being enforced to achieve a reduction in road transport CO2 emissions, automotive companies are having to research and develop technologies that deliver greener driving . Whilst emissions from passenger vehicles have dropped over recent years, there has been an increase in emissions from light commercial vehicles (LCVs). The nature of LCV delivery work is a routine of ingress/egress of the vehicle, changing from a standing to a seated posture repetitively throughout the day. One research focus is packaging occupants in to a smaller vehicle space, in order to reduce the amount of vehicle emissions over its lifecycle. For LCVs, benefits from space saving technology could be an increase in overall loading space (with the same vehicle length) or a reduction in the overall length/weight of the vehicle. Furthermore, an elevated seat posture could reduce the strain on drivers during ingress/egress, as it is closer than that of a conventional seat to a standing posture. Whilst space saving technology has obvious benefits, current driving conventions and standards are not inclusive of new and novel seated postures when packaging a driver in to a vehicle. The fundamental purpose of a vehicle driver s seat is to be comfortable and safe for the occupant and to facilitate driving. It has been shown that a seat needs both good static and dynamic factors to contribute to overall seat comfort. Additionally, comfortable body angles have been identified and ratified by studies investigating comfortable driving postures; however, this knowledge only applies to conventional driving postures. For an elevated posture , defined as having the driver s knee point below the hip point, there is little research or guidance. The overall aim of this thesis is to identify the ergonomic requirements of a wide anthropometric range of drivers in an elevated driving posture for LCVs, which was investigated using a series of laboratory based experiments. An iterative fitting trial was designed to identify key seat parameters for static comfort in an elevated posture seat. The results showed that in comparison with a conventional seat: Seat base length was preferred to be shorter (380mm compared with 460mm); Seat base width was preferred to be wider (560mm compared with 480mm); Backrest height was preferred to be longer (690mm compared with 650mm). These findings provided a basis for a seat design specification for an elevated posture concept seat, which was tested in two subsequent laboratory studies. A long-term discomfort evaluation was conducted, using a driving simulator and a motion platform replicating real road vibration. Discomfort scores were collected at 10-minute intervals (50-minutes overall) using a body map and rating scale combination. The results indicated that in comparison with the conventional posture, the elevated posture performed as well, or better (significantly lower discomfort for right shoulder and lower back; p<0.05, two-tailed), in terms of long-term discomfort. Furthermore, the onset of discomfort (i.e. the time taken for localised discomfort ratings to be significantly higher than the baseline ratings reported before the trial) occurred after as little as 10 minutes (conventional posture) and 20 minutes (elevated posture) respectively. A lateral stability evaluation was conducted using low-frequency lateral motion on a motion platform (platform left and right rolls of 14.5°). Stability scores were reported after each sequence of rolls, comparing scores on a newly developed lateral stability scale between three seats: Conventional posture seat; Elevated posture concept seat (EPS1); Elevated posture concept seat with modifications aimed at improving stability (EPS2). Participants reported being more unstable in EPS1, compared with the conventional posture seat (p<0.05, Wilcoxon). However, the EPS2 seat performed equally to the conventional posture seat. These findings suggest that the elevated posture seat developed in this research is a feasible and comfortable alternative to a conventional posture seat. Furthermore, the final elevated seating positions showed that real space saving can be achieved in this posture thus allowing for more compact and lighter vehicles and potentially reducing strain on drivers during ingress/egress.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/20107
Appears in Collections:PhD Theses (Design School)

Files associated with this item:

File Description SizeFormat
Thesis-2016-Smith.pdf4.87 MBAdobe PDFView/Open
Form-2016-Smith.pdf1.04 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.