Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/20156

Title: Modeling the photocatalytic mineralization in water of commercial formulation of estrogens 17-β estradiol (E2) and nomegestrol acetate in contraceptive pills in a solar powered compound parabolic collector
Authors: Colina-Marquez, Jose
Machuca-Martinez, Fiderman
Li Puma, Gianluca
Keywords: Emerging contaminants
Modeling and simulation
Pharmaceuticals
Degradation
Photoreactor design
Six-flux model
UV-photolysis
Langmuir–Hinshelwood
Issue Date: 2015
Publisher: © the authors; licensee MDPI, Basel, Switzerland
Citation: COLINA-MARQUEZ, J., MACHUCA-MARTINEZ, F. and LI PUMA, G., 2015. Modeling the photocatalytic mineralization in water of commercial formulation of estrogens 17-β estradiol (E2) and nomegestrol acetate in contraceptive pills in a solar powered compound parabolic collector. Molecules, 20 (7), pp. 13354 - 13373.
Abstract: Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO<inf>2</inf> Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM).
Description: © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Sponsor: Colina-Marquez and Machuca-Martinez thank Colciencias grant No. 117-521-28546 for the financial support and the chemical engineers Jaime Gomez and Leandro Quevedo for gathering the experimental data and running the simulations. Colina-Marquez also thanks the British Council for awarding the Travel Grant for Researcher Links, which made the collaboration between the research groups from Colombia and the United Kingdom possible.
Version: Published
DOI: 10.3390/molecules200713354
URI: https://dspace.lboro.ac.uk/2134/20156
Publisher Link: http://dx.doi.org/10.3390/molecules200713354
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
molecules-20-13354-v2.pdfPublished version1.17 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.