Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/20160

Title: Thermal sensitivity analysis of avionic and environmental control subsystems to variations in flight condition
Authors: Jones, Andy
Childs, Thomas
Chen, Rui
Murray, Angus
Issue Date: 2016
Publisher: American Institute of Aeronautics and Astronautics
Citation: JONES, A. ...et al., 2016. Thermal sensitivity analysis of avionic and environmental control subsystems to variations in flight condition. Presented at: 54th AIAA Aerospace Sciences Meeting, AIAA SciTech, San Diego, USA, AIAA 2016-1980
Abstract: The operation of fast jet military aircraft spans a large flight and atmospheric envelope. This study is the analysis of an avionic thermal management system for a typical fast jet military aircraft across changing operating conditions. The system which governs avionic module temperature is only partially active; therefore the efficiency and heat rejection capability is almost completely dependent on the system inputs of flight and atmospheric conditions. The thermal sensitivity to variation in system inputs is assessed with the use of experimental testing, one-dimensional thermodynamic modelling and energy flow calculations. The avionic module is the final component of the thermal management flow path and to understand the performance at component level, every subsystem upstream must be considered through a complete systemic approach. The facility used to deliver this analysis considers the total system energy consumption, Environmental Control System (ECS), cabin and three avionic subsystems as a single airflow path. The system is subjected to a typical fast jet flight profile, including a take-off, climb, cruise, combat, landing and ground operation cases. The flight profile is considered across three atmospheric conditions; ISA standard, hot and cold. It is found that the system heat rejection is stable with variations in flight conditions; therefore the system efficiency is inversely proportion to total energy consumption. The highest system efficiency is delivered at high altitude low load cruise conditions, with the lowest efficiency found at high speed low attitude flight. The system is most efficient when thermal safety factor is lowest. This is hot atmospheric and low load conditions, where the ECS bypass flow rate is low and avionic module exhaust temperatures are high. The ground ops condition in a hot atmosphere is the worst case scenario for avionic module exhaust and cabin temperatures. Considerable system gains could be made by introducing an element of active control, such as limiting bleed and ram air consumption when avionic temperatures are low and ECS bypass flow rate is high.
Description: This paper is in closed access.
Sponsor: The project is co-funded by EPSRC (Engineering and Physical Sciences Research Council, UK), Loughborough University and BAE Systems.
Version: Published
DOI: 10.2514/6.2016-1980
URI: https://dspace.lboro.ac.uk/2134/20160
Publisher Link: http://dx.doi.org/10.2514/6.2016-1980
Appears in Collections:Closed Access (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
6%2E2016-1980.pdfPublished version508.03 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.