Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/20216

Title: Mathematical modeling, design, and optimization of a multisegment multiaddition plug-flow crystallizer for antisolvent crystallizations
Authors: Su, Qinglin
Benyahia, Brahim
Nagy, Zoltan K.
Rielly, Chris D.
Issue Date: 2015
Publisher: © American Chemical Society
Citation: SU, Q. ... et al., 2015. Mathematical modeling, design, and optimization of a multisegment multiaddition plug-flow crystallizer for antisolvent crystallizations. Organic Process Research and Development, 19 (12), pp. 1859 - 1870.
Abstract: In the pharmaceutical industries, the requirements of rapid process development and scalable design have made the tubular crystallizer a promising platform for continuous manufacturing and crystallization processes, capable of replacing conventional capital- and labor-intensive batch operations. This paper takes a process systems engineering (PSE) approach to the optimal design of a continuous antisolvent addition crystallizer to deliver the most promising product qualities, such as the crystal size distribution. A multisegment multiaddition plug-flow crystallizer (MSMA-PFC) is considered as an example of a continuous antisolvent crystallization process, in which the total number, location, and distribution of antisolvent additions are to be optimized. First-principles dynamic and steady-state mathematical models for the MSMA-PFC are presented, based on example kinetic models for nucleation and growth of paracetamol crystallizing in acetone, with water as the antisolvent. The performances of different crystallizer configurations operated under optimal design conditions are then compared. The configuration in which antisolvent could be added at a variety of different locations along the tube length and at optimal flow rates was able to outperform previous designs in the literature which considered equally spaced antisolvent additions. The use of dynamic models to detect problems during startup of an MSMA-PFC was also highlighted.
Description: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organic Process Research and Development, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.oprd.5b00110
Sponsor: Engineering and Physics Science Research Council of United Kingdom (UK EPSRC EP/K014250/1)
Version: Accepted for publication
DOI: 10.1021/acs.oprd.5b00110
URI: https://dspace.lboro.ac.uk/2134/20216
Publisher Link: http://dx.doi.org/10.1021/acs.oprd.5b00110
ISSN: 1083-6160
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
acs.oprd.pdfAccepted version1.05 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.