Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/20412

Title: The roles of ZnTe buffer layers on CdTe solar cell performance
Authors: Wolden, Colin A.
Abbas, Ali
Li, Jiaojiao
Diercks, David R.
Meysing, Daniel M.
Ohno, Timothy R.
Beach, Joseph D.
Barnes, Teresa M.
Walls, Michael
Keywords: CdTe
ZnTe
TEM
APT
Copper telluride
Issue Date: 2016
Publisher: © Elsevier
Citation: WOLDEN, C.A. ... et al, 2016. The roles of ZnTe buffer layers on CdTe solar cell performance. Solar Energy Materials and Solar Cells, 147, pp. 203 - 210.
Abstract: The use of ZnTe buffer layers at the back contact of CdTe solar cells has been credited with contributing to recent improvements in both champion cell efficiency and module stability. To better understand the controlling physical and chemical phenomena, high resolution transmission electron microscopy (HR-TEM) and atom probe tomography (APT) were used to study the evolution of the back contact region during rapid thermal processing (RTP) of this layer. After activation the ZnTe layer, initially nanocrystalline and homogenous, transforms into a bilayer structure consisting of a disordered region in contact with CdTe characterized by significant Cd-Zn interdiffusion, and a nanocrystalline layer that shows evidence of grain growth and twin formation. Copper, co-evaporated uniformly within ZnTe, is found to dramatically segregate and aggregate after RTP, either collecting near the ZnTe|Au interface or forming CuxTe clusters in the CdTe layer at defects or grain boundaries near the interface. Analysis of TEM images revealed that Zn accumulates at the edge of these clusters, and three-dimensional APT images confirmed that these are core-shell nanostructures consisting of Cu1.4Te clusters encased in Zn. These changes in morphology and composition are related to cell performance and stability.
Description: This article is closed access.
Sponsor: CAW, JL, DRD, TRO, and JDB gratefully acknowledge the Bay Area Photovoltaic Consortium for their support of this work under Department of Energy Award no. DE-EE0004946. AA and JMW was funded by UKERC through the EPSRC Supergen SuperSolar Hub. DMM and TMB were supported by the U.S. Department of Energy through the SunShot Foundational Program to Advance Cell Efficiency (F-PACE) under Contract no. DE-AC36-08-GO28308.
Version: Published
DOI: 10.1016/j.solmat.2015.12.019
URI: https://dspace.lboro.ac.uk/2134/20412
Publisher Link: http://dx.doi.org/10.1016/j.solmat.2015.12.019
ISSN: 0927-0248
Appears in Collections:Closed Access (CREST)

Files associated with this item:

File Description SizeFormat
SOLMAT_8093.pdfAccepted version1.93 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.