Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/20689

Title: Enhancement of absorption and resistance of motion utilizing a multi-channel opto-electronic sensor to effectively monitor physiological signs during sport exercise
Authors: Alzahrani, Abdullah
Hu, Sijung
Azorin-Peris, Vicente
Barrett, Laura A.
Esliger, Dale W.
Hayes, Matthew
Akbare, Shafique
Achart, Jerome
Kuoch, Sylvain
Keywords: Multi-channel opto-electronics
Accelerometer
Artefact motion
Sport physiological monitoring
Optics
Issue Date: 2015
Publisher: © SPIE
Citation: ALZAHRANI, A. ... et al., 2015. Enhancement of absorption and resistance of motion utilizing a multi-channel opto-electronic sensor to effectively monitor physiological signs during sport exercise. Proceedings of SPIE, 9315, DOI: 10.1117/12.2076582.
Abstract: This study presents an effective engineering approach for human vital signs monitoring as increasingly demanded by personal healthcare. The aim of this work is to study how to capture critical physiological parameters efficiently through a well-constructed electronic system and a robust multi-channel opto-electronic patch sensor (OEPS), together with a wireless communication. A unique design comprising multi-wavelength illumination sources and a rapid response photo sensor with a 3-axis accelerometer enables to recover pulsatile features, compensate motion and increase signal-to-noise ratio. An approved protocol with designated tests was implemented at Loughborough University a UK leader in sport and exercise assessment. The results of sport physiological effects were extracted from the datasets of physical movements, i.e. sitting, standing, waking, running and cycling. t-test, Bland-Altman and correlation analysis were applied to evaluate the performance of the OEPS system against Acti-Graph and Mio-Alpha.There was no difference in heart rate measured using OEPS and both Acti-Graph and Mio-Alpha (both p<0.05). Strong correlations were observed between HR measured from the OEPS and both the Acti-graph and Mio-Alpha (r = 0.96, p < 0.001). Bland-Altman analysis for the Acti-Graph and OEPS found the bias 0.85 bpm, the standard deviation 9.20 bpm, and the limits of agreement (LOA) -17.18 bpm to+18.88 bpm for lower and upper limits of agreement respectively, for the Mio-Alpha and OEPS the bias is 1.63 bpm, standard deviation SD8.62 bpm, lower and upper limits of agreement, - 15.27 bpm and +18.58 bpm respectively. The OEPS demonstrates a real time, robust and remote monitoring of cardiovascular function.
Description: This document is Closed Access.
Sponsor: The authors would like to acknowledge Loughborough University and Taif University for supporting this research.
Version: Published
DOI: 10.1117/12.2076582
URI: https://dspace.lboro.ac.uk/2134/20689
Publisher Link: http://dx.doi.org/10.1117/12.2076582
ISSN: 0277-786X
Appears in Collections:Closed Access (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Enhancement of absorption and resistance of motion utilizing a multi-channel optoelectronic sensor to effectively monitor physiological signs during sport exercise.pdfPublished version950.61 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.