Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/21089

Title: Quantum design of ionic liquids for extreme chemical inertness and a new theory of the glass transition
Authors: Fletcher, Stephen
Black, Victoria J.
Kirkpatrick, Iain
Varley, Thomas S.
Keywords: Ionic liquids
Quantum chemistry
Voltammetry
Glass transition
Supercapacitors
Issue Date: 2013
Publisher: © Springer-Verlag
Citation: FLETCHER, S. ... et al, 2013. Quantum design of ionic liquids for extreme chemical inertness and a new theory of the glass transition. Journal of Solid State Electrochemistry, 17 (2), pp. 327 - 337.
Abstract: In many modern technologies (such as batteries and supercapacitors), there is a strong need for redox-stable ionic liquids. Experimentally, the stability of ionic liquids can be quantified by the voltage range over which electron tunneling does not occur, but so far, quantum theory has not been applied systematically to this problem. Here, we report the electrochemical reduction of a series of quaternary ammonium cations in the presence of bis(trifluoromethylsulfonyl)imide (TFSI) anions and use nonadiabatic electron transfer theory to explicate the results. We find that increasing the chain length of the alkyl groups confers improved chemical inertness at all accessible temperatures. Simultaneously, decreasing the symmetry of the quaternary ammonium cations lowers the melting points of the corresponding ionic liquids, in two cases yielding highly inert solvents at room temperature. These are called hexyltriethylammonium TFSI (HTE-TFSI) and butyltrimethylammonium TFSI (BTM-TFSI). Indeed, the latter are two of the most redox-stable solvents in the history of electrochemistry. To gain insight into their properties, very high precision electrical conductivity measurements have been carried out in the range +20 °C to +190 °C. In both cases, the data conform to the Vogel-Tammann-Fulcher (VTF) equation with “six nines” precision (R 2 > 0.999999). The critical temperature for the onset of conductivity coincides with the glass transition temperature T g. This is compelling evidence that ionic liquids are, in fact, softened glasses. Finally, by focusing on the previously unsuspected connection between the molecular degrees of freedom of ionic liquids and their bulk conductivities, we are able to propose a new theory of the glass transition. This should have utility far beyond ionic liquids, in areas as diverse as glassy metals and polymer science.
Description: This is the accepted version of a paper subsequently published in the Journal of Solid State Electrochemistry. The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-012-1974-2
Sponsor: This work was financially supported by Schlumberger WCP Ltd (UK) and EPSRC (UK).
Version: Accepted for publication
DOI: 10.1007/s10008-012-1974-2
URI: https://dspace.lboro.ac.uk/2134/21089
Publisher Link: http://dx.doi.org/10.1007/s10008-012-1974-2
ISSN: 1432-8488
Appears in Collections:Published Articles (Chemistry)

Files associated with this item:

File Description SizeFormat
SF Quantum Design.pdfAccepted version991.68 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.