Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/21389

Title: A methodology for developing local smart diagnostic models using expert knowledge
Authors: Madsen, Anders L.
Sondberg-Jeppesen, Nicolaj
Lohse, Niels
Sayed, Mohamed S.
Issue Date: 2015
Publisher: © IEEE
Citation: MADSEN, A.L. ...et al., 2015. A methodology for developing local smart diagnostic models using expert knowledge. IN: 2015 13th IEEE International Conference on Industrial Informatics, (INDIN 2015), Cambridge, 22-24th July, pp. 1682-1687.
Abstract: © 2015 IEEE. This paper describes an innovative modular component-based modelling approach for diagnostics and condition-monitoring of manufacturing equipment. The approach is based on the use of object-oriented Bayesian networks, which supports a natural decomposition of a large and complex system into a set of less complex components. The methodology consists of six steps supporting the development process: Begin, Design, Implement, Test, Analyse, and Deploy. The process is iterative and the steps should be repeated until a satisfactory model has been achieved. The paper describes the details of the methodology as well as illustrates the use of the component-based modelling approach on a linear axis used in manufacturing. This application demonstrates the power and flexibility of the approach for diagnostics and condition-monitoring and shows a significant potential of the approach for modular component-based modelling in manufacturing and other domains.
Description: Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Version: Accepted for publication
DOI: 10.1109/INDIN.2015.7281987
URI: https://dspace.lboro.ac.uk/2134/21389
Publisher Link: http://dx.doi.org/10.1109/INDIN.2015.7281987
ISBN: 9781479966493
ISSN: 1935-4576
Appears in Collections:Conference Papers and Contributions (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
INDIN2015 A Methodology for Developing Local Smart Diagnostic Models Using Expert Knowledge.pdfAccepted version249.27 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.