Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/21528

Title: Experimental and computational study of vehicle surface contamination on a generic bluff body
Authors: Kabanovs, Anton
Varney, Max
Garmory, Andrew
Passmore, Martin A.
Gaylard, Adrian P.
Issue Date: 2016
Publisher: © SAE International
Citation: 2016. Experimental and computational study of vehicle surface contamination on a generic bluff body. SAE World Congress 2016, Detroit, SAE Technical Paper 2016-01-1604, doi:10.4271/2016-01-1604.
Series/Report no.: SAE Technical Paper;2016-01-1604
Abstract: This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle. The aim is to investigate the fundamentals of contamination in a case where both flow field and contamination patterns can be measured, and also to provide validation of modelling techniques in a case where flow and spray conditions are known. CFD results were obtained using both steady RANS and unsteady URANS solvers, combined with particle tracking methods. Steady RANS does not capture the wake structures accurately and this affects the contamination prediction. URANS is able to recover the large-scale wake unsteadiness seen in the experimental data, but the difference between the experimental and computational contamination distributions is still notable. The CFD is also able to provide further insight by showing the behaviour of particles of different sizes. Large particles are found to take on a ballistic trajectory and penetrate the wake. In contrast, small particles are shown to be less likely to become entrained into the wake.
Description: This paper was published in SAE Technical Paper 2016-01-1604 and the definitive published version is available at http://dx.doi.org/10.4271/2016-01-1604
Version: Published
DOI: 10.4271/2016-01-1604
URI: https://dspace.lboro.ac.uk/2134/21528
Publisher Link: http://dx.doi.org/10.4271/2016-01-1604
Appears in Collections:Conference Papers and Presentations (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
Passmore_21528_2016-01-1604.pdfPublished version4.36 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.