Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/21845

Title: Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison
Authors: Lenton, John P.
van der Woude, Lucas H.V.
Fowler, N.
Nicholson, Graham
Tolfrey, Keith
Goosey-Tolfrey, Victoria L.
Issue Date: 2014
Publisher: © Georg Thieme Verlag KG Stuttgart
Citation: LENTON, J.P. ... et al, 2014. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison. International Journal of Sports Medicine, 35 (3), pp.223-231
Abstract: To compare the force application characteristics at various push frequencies of asynchronous (ASY) and synchronous (SYN) hand-rim propulsion, 8 able-bodied participants performed a separate sub-maximal exercise test on a wheelchair roller ergometer for each propulsion mode. Each test consisted of a series of 5, 4-min exercise blocks at 1.8 m · s-1 - initially at their freely chosen frequency (FCF), followed by four counter-balanced trials at 60, 80, 120 and 140% FCF. Kinetic data was obtained using a SMART Wheel, measuring forces and moments. The gross efficiency (GE) was determined as the ratio of external work done and the total energy expended. The ASY propulsion produced higher force measures for FRES, F TAN, rate of force development & FEF (P<0.05), while there was no difference in GE values (P=0.518). In pair-matched push frequencies (ASY80:SYN60, ASY100:SYN80, ASY 120:SYN100 and ASY140:SYN120), ASY propulsion forces remained significantly higher (FRES, F TAN, rate of force development & FEF P<0.05), and there was no significant effect on GE (P=0.456). Both ASY and SYN propulsion demonstrate similar trends: changes in push frequency are accompanied by changes in absolute force even without changes in the gross pattern/trend of force application, FEF or GE. Matched push frequencies continue to produce significant differences in force measures but not GE. This suggests ASY propulsion is the predominant factor in force application differences. The ASY would appear to offer a kinetic disadvantage to SYN propulsion and no physiological advantage under current testing conditions. © Georg Thieme Verlag KG Stuttgart New York.
Description: This paper is closed access.
Version: Closed access
DOI: 10.1055/s-0033-1345178
URI: https://dspace.lboro.ac.uk/2134/21845
Publisher Link: http://dx.doi.org/10.1055/s-0033-1345178
ISSN: 0172-4622
Appears in Collections:Closed Access (Sport, Exercise and Health Sciences)

Files associated with this item:

File Description SizeFormat
LentonIJSM2013.pdfPublished version1.04 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.