Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/21935

Title: Formation of size-tuneable biodegradable polymeric nanoparticles by solvent displacement method using micro-engineered membranes fabricated by laser drilling and electroforming
Authors: Othman, Rahimah
Vladisavljevic, Goran T.
Shahmohamadi, Hamed
Nagy, Zoltan K.
Holdich, R.G.
Keywords: Membrane dispersion cell
Computational fluid dynamics
Nanoprecipitation
Biodegradable polycaprolactone nanoparticles
Microfabricated membrane
Micromixing
Issue Date: 2016
Publisher: © Elsevier
Citation: OTHMAN, R. ... et al, 2016. Formation of size-tuneable biodegradable polymeric nanoparticles by solvent displacement method using micro-engineered membranes fabricated by laser drilling and electroforming. Chemical Engineering Journal, doi:10.1016/j.cej.2016.07.010
Abstract: Biodegradable poly(ε-caprolactone) (PCL) drug-carrier nanoparticles (NPs) were produced by rapid membrane micromixing combined with nanoprecipitation in a stirred cell employing novel membrane dispersion. The organic phase composed of 0.1−0.6 wt% PCL dissolved in tetrahydrofuran was injected into the aqueous phase (Mili-Q water or 0.2−1 wt% poly(vinyl alcohol) using two microfabricated membranes with different pore morphologies and spatial pore arrangements: ringed stainless steel membrane of reduced (annular) operating area with a square array of cylindrical laser-drilled pores and electroformed nickel membrane of full operating area with a hexagonal array of conical, funnel-shaped pores. The size of the NPs was precisely controlled over a range of 159−394 nm by changing the aqueous-to-organic volumetric ratio, stirring rate, transmembrane flux, the polymer content in the organic phase, membrane type and pore size. The smallest and most uniform particles with a Z-average of 159 nm and a polydispersity index of 0.107±0.014 were obtained using a 10 μm pore-sized stainless steel membrane at the transmembrane flux of 140 L m-2 h-1, a stirring rate of 1,300 rpm, and an aqueous-to-organic phase volume ratio of 10 using 1 g L-1 PCL in the organic phase. The particle size decreased by increasing the stirring rate and the aqueous-to-organic volumetric ratio, and by decreasing the polymer concentration in the aqueous phase and the transmembrane flux. The existence of the peak shear stress within a transitional radius and a rapid decline of the shear stress away from the membrane surface were revealed by numerical modelling.
Description: This paper is embargoed until July 2017.
Sponsor: The authors acknowledge the financial support given for this work through the Ministry of Higher Education Malaysia and the technical assistance by Dr Zhaoxia Zhou and Dr Keith Yendall from the Department of Materials at Loughborough University for TEM and FEG-SEM analyses. The authors also acknowledge the financial support provided by the EPSRC grant EP/HO29923/1 and the European Research Council grant [280106-CrySys].
Version: Accepted for publication
DOI: 10.1016/j.cej.2016.07.010
URI: https://dspace.lboro.ac.uk/2134/21935
Publisher Link: http://dx.doi.org/10.1016/j.cej.2016.07.010
ISSN: 0300-9467
Appears in Collections:Closed Access (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
CEJ_15459.pdfAccepted version1.5 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.