Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/21956

Title: Simulation of Particle Flow in Inertial Particle Separators with Eulerian VR-QMOM Method
Authors: Sun, Dan
Garmory, Andrew
Page, Gary J.
Tristanto, Indi H.
Issue Date: 2016
Publisher: AIAA / © The Authors
Citation: SUN, D. ... et al, 2016. Simulation of Particle Flow in Inertial Particle Separators with Eulerian VR-QMOM Method. AIAA Journal, 54(12), pp.3803-3812.
Abstract: This paper presents research into practical simulations of particle flow in inertial particle separators typically used in helicopter and tilt-rotor aircraft propulsion systems. The flowfield of the carrier gas is predicted by a Reynolds-averaged Navier–Stokes computational-fluid-dynamics method with the Reynolds-Averaged turbulence model. An Eulerian methodology is used to trace the trajectories of foreign particles such as droplets, ice, and sand. To predict the characteristics of particle wall bouncing in dilute particle flow, the velocity-reassociated two-node quadrature-based method of moments is used. The particle distributions in the inertial particle separatorare predicted for various particle sizes, and these are compared with results from a Lagrangian particle-tracking method. The particle–wallinteractions and the separation efficiencies are studied for solid particles bouncing off perfectly elastic walls and an inertial particle separator shell coated with the M246 alloy, which changes the coefficients of restitution. The simulated separation efficiencies predicted by the Eulerian method are compared with the simulation using the Lagrangian method over a range of particle sizes. The velocity-reassociated two-node quadrature-based method of moments is seen to reproduce the particle bouncing and trajectory crossing behavior and to agree well with the Lagrangian method for predicted separation efficiencies. The new velocity-reassociated two-node quadrature-based method of moments is shown to be an accurate and convenient alternative to established Lagrangian approaches.
Description: This paper was accepted for publication in the journal AIAA Journal and the definitive version is available at: http://dx.doi.org/10.2514/1.J054981
Sponsor: This work has been funded by the Innovate UK (formerly the United Kingdom Technology Strategy Board, TSB) under SILOETII, in conjunction with Rolls-Royce PLC.
Version: Accepted for publication
DOI: 10.2514/1.J054981
URI: https://dspace.lboro.ac.uk/2134/21956
Publisher Link: http://dx.doi.org/10.2514/1.J054981
ISSN: 0001-1452
Appears in Collections:Published Articles (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
AIAAJ-2015finalauthorversion.pdfAccepted version1.33 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.