Loughborough University
Browse
hiley2016a.pdf (391.13 kB)

The role of functional variability in a whole body co-ordinated movement – application to high bar giant circles

Download (391.13 kB)
journal contribution
posted on 2016-07-22, 13:59 authored by Michael HileyMichael Hiley, Fred YeadonFred Yeadon
When performing a giant circle on high bar a gymnast flexes at the hips in the lower part of the circle, increasing the kinetic energy, and extends in the upper part of the circle, decreasing the kinetic energy. In order to perform a sequence of giant circles at even tempo, any variation in angular velocity at the end of the flexion phase needs to be reduced by the end of the extension phase. The aim of this study was to determine the nature and contribution of such adjustments. A computer simulation model of a gymnast performing giant circles on high bar was used to investigate strategies of (a) fixed timing of the extension phase (feedforward control) and (b) stretched timing in order to extend at the same point of the giant circle (feedforward with additional feedback control). For three elite gymnasts fixed timing reduced the angular velocity variation on average by 36% whereas stretched timing reduced the variation by 63%. The mean reduction for the actual gymnast techniques was 61%. It was concluded that both feedforward and feedback control strategies are used by gymnasts for controlling such movements.

History

School

  • Sport, Exercise and Health Sciences

Published in

Human Movement Science

Volume

49

Pages

95 - 103

Citation

HILEY, M.J. and YEADON, M.R., 2016. The role of functional variability in a whole body co-ordinated movement – application to high bar giant circles. Human Movement Science, 49, pp. 95 - 103.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-06-23

Publication date

2016-06-28

Notes

This paper was accepted for publication in the journal Human Movement Science and the definitive published version is available at http://dx.doi.org/10.1016/j.humov.2016.06.011

ISSN

0167-9457

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC