Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/22337

Title: Experimental study on laminar flame characteristics of methane-PRF95 dual fuel under lean burn conditions
Authors: Wei, Haiqiao
Gao, Dongzhi
Zhou, Lei
Petrakides, Sotiris
Chen, Rui
Feng, Dengquan
Pan, Jiaying
Keywords: Methane-PRF95
Laminar flame speed
Lean burn
Flame instability
Issue Date: 2016
Publisher: © Elsevier Ltd.
Citation: WEI, H. ... et al., 2016. Experimental study on laminar flame characteristics of methane-PRF95 dual fuel under lean burn conditions. Fuel, 185, pp. 254 - 262.
Abstract: The effects of methane addition to PRF95 (primary reference fuel with 95% volume of iso-octane and 5% volume of n-heptane) on the fundamental combustion parameters are experimentally investigated in a cylindrical combustion vessel using classical schlieren technique. In this study, methane is added with three energy fractions of 25%, 50% and 75% to PRF95. The laminar flame propagation, Markstein length and flame instability of dual fuels under different initial pressures and with different equivalence ratios, especially under lean burn condition, are well studied. Spherical flames are experimentally investigated at the initial temperature of 373 K and under the pressures of 2.5 bar, 5 bar and 10 bar. The equivalence ratios vary with 0.8, 1.0 and 1.2. The stretched flame speeds are determined by outwardly spherical flame method. The results show that at low initial pressures, the addition of methane to PRF95 increases the stretched flame speeds with lean equivalence ratios while decreases it in rich region. Laminar flame of methane-PRF95 mixtures burn faster than those of pure methane and PRF95 with equivalence ratio of 0.8 over the whole range of the initial pressures investigated, and this trend is more obvious at low pressure. Comparing the data of 25% methane dual fuel (DF25) with that of base fuels with the equivalence ratio of 0.8 and under the initial pressure of 2.5 bar, it can be seen that the flame speed of DF25 is 57% faster than that of methane and 22% faster than that of PRF95. These results provide important theoretical references to lean burn SI engine with methane-gasoline dual fuels under lean burn conditions.
Description: Closed access until 4 August 2017. This article was published in the journal Fuel [© Elsevier Ltd.] and the definitive version is available at: http://dx.doi.org/10.1016/j.fuel.2016.07.065
Sponsor: This work was supported by the National Natural Science Foundation of China (Grant No. 51476114) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032130004).
Version: Accepted for publication
DOI: 10.1016/j.fuel.2016.07.065
URI: https://dspace.lboro.ac.uk/2134/22337
Publisher Link: http://dx.doi.org/10.1016/j.fuel.2016.07.065
ISBN: 0016-2361
Appears in Collections:Closed Access (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
10.1016/j.fuel.2016.07.065.pdfAccepted version1.35 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.