Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/22372

Title: Novel fine pitch interconnection methods using metallised polymer spheres
Authors: Tao, Junlei
Issue Date: 2016
Publisher: © Junlei Tao
Abstract: There is an ongoing demand for electronics devices with more functionality while reducing size and cost, for example smart phones and tablet personal computers. This requirement has led to significantly higher integrated circuit input/output densities and therefore the need for off-chip interconnection pitch reduction. Flip-chip processes utilising anisotropic conductive adhesives anisotropic conductive films (ACAs/ACFs) have been successfully applied in liquid crystal display (LCD) interconnection for more than two decades. However the conflict between the need for a high particle density, to ensure sufficient the conductivity, without increasing the probability of short circuits has remained an issue since the initial utilization of ACAs/ACFs for interconnection. But this issue has become even more severe with the challenge of ultra-fine pitch interconnection. This thesis advances a potential solution to this challenge where the conductive particles typically used in ACAs are selectively deposited onto the connections ensuring conductivity without bridging. The research presented in this thesis work has been undertaken to advance the fundamental understanding of the mechanical characteristics of micro-sized metal coated polymer particles (MCPs) and their application in fine or ultra-fine pitch interconnections. This included use of a new technique based on an in-situ nanomechanical system within SEM which was utilised to study MCP fracture and failure when undergoing deformation. Different loading conditions were applied to both uncoated polymer particles and MCPs, and the in-situ system enables their observation throughout compression. The results showed that both the polymer particles and MCP display viscoelastic characteristics with clear strain-rate hardening behaviour, and that the rate of compression therefore influences the initiation of cracks and their propagation direction. Selective particle deposition using electrophoretic deposition (EPD) and magnetic deposition (MD) of Ni/Au-MCPs have been evaluated and a fine or ultra-fine pitch deposition has been demonstrated, followed by a subsequent assembly process. The MCPs were successfully positively charged using metal cations and this charging mechanism was analysed. A new theory has been proposed to explain the assembly mechanism of EPD of Ni/Au coated particles using this metal cation based charging method. The magnetic deposition experiments showed that sufficient magnetostatic interaction force between the magnetized particles and pads enables a highly selective dense deposition of particles. Successful bonding to form conductive interconnections with pre-deposited particles have been demonstrated using a thermocompression flip-chip bonder, which illustrates the applicable capability of EPD of MCPs for fine or ultra-fine pitch interconnection.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
Sponsor: Loughborough University and EPSRC
URI: https://dspace.lboro.ac.uk/2134/22372
Appears in Collections:PhD Theses (Civil and Building Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2016-Tao.pdf16.08 MBAdobe PDFView/Open
Form-2016-Tao.pdf809.99 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.