Loughborough University
Browse
Marjoribanks-et-al.pdf (3.37 MB)

Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling

Download (3.37 MB)
journal contribution
posted on 2016-09-26, 15:55 authored by Tim MarjoribanksTim Marjoribanks, Richard J. Hardy, Stuart N. Lane, Daniel R. Parsons
Vegetation is a characteristic feature of shallow aquatic flows such as rivers, lakes and coastal waters. Flow through and above aquatic vegetation canopies is commonly described using a canopy mixing layer analogy which provides a canonical framework for assessing key hydraulic characteristics such as velocity profiles, large-scale coherent turbulent structures and mixing and transport processes for solutes and sediments. This theory is well developed for the case of semi-rigid terrestrial vegetation and has more recently been applied to the case of aquatic vegetation. However, aquatic vegetation often displays key differences in morphology and biomechanics to terrestrial vegetation due to the different environment it inhabits. Here we investigate the effect of plant morphology and biomechanical properties on flow-vegetation interactions through the application of a coupled LES-Biomechanical model. We present results from two simulations of aquatic vegetated flows: one assuming a semi-rigid canopy and the other a highly flexible canopy and provide a comparison of the associated flow regimes. Our results show that while both cases display canopy mixing layers, there are also clear differences in the shear layer characteristics and turbulent processes between the two, suggesting that the semi-rigid approximation may not provide a complete representation of flow-vegetation interactions.

Funding

Timothy I. Marjoribanks was funded under a Natural Environment Research Council (NERC) PhD studentship and all authors acknowledge funding under NERC Grant NE/K003194/1.

History

School

  • Architecture, Building and Civil Engineering

Published in

Environmental Fluid Mechanics

Citation

MARJORIBANKS, T., ... et al, 2017. Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling. Environmental Fluid Mechanics, 17(2), pp.277-301.

Publisher

Springer Verlag (Germany)

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2016-09-06

Publication date

2017

Notes

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

ISSN

1573-1510

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC