Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/2271

Title: Improving performance of genetic algorithms by using novel fitness functions
Authors: Cooper, Jason
Keywords: Genetic algorithms
Fitness functions
Efficiency
Intelligent fitness functions
Partial fitness functions
Issue Date: 2006
Abstract: This thesis introduces Intelligent Fitness Functions and Partial Fitness Functions both of which can improve the performance of a genetic algorithm which is limited to a fixed run time. An Intelligent Fitness Function is defined as a fitness function with a memory. The memory is used to store information about individuals so that duplicate individuals do not need to have their fitness tested. Different types of memory (long and short term) and different storage strategies (fitness based, time base and frequency based) have been tested. The results show that an intelligent fitness function, with a time based long term memory improves the efficiency of a genetic algorithm the most. A Partial Fitness Function is defined as a fitness function that only partially tests the fitness of an individual at each generation. Thus only promising individuals get fully tested. Using a partial fitness function gives the genetic algorithm more evolutionary steps in the same length of time as a genetic algorithm using a normal fitness function. The results show that a genetic algorithm using a partial fitness function can achieve higher fitness levels than a genetic algorithm using a normal fitness function. Finally a genetic algorithm designed to solve a substitution cipher is compared to one equipped with an intelligent fitness function and another equipped with a partial fitness function. The genetic algorithm with the intelligent fitness function and the genetic algorithm with the partial fitness function both show a significant improvement over the genetic algorithm with a conventional fitness function.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/2271
Appears in Collections:PhD Theses (Computer Science)

Files associated with this item:

File Description SizeFormat
cooper_thesis2006.pdf2.81 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.