Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/22802

Title: A Tesla-Blumlein PFL-Bipolar pulsed power generator
Authors: Wang, Meng
Keywords: Pulsed power
Tesla transformer
Blumlein PFL
Issue Date: 2016
Publisher: © Meng Wang
Abstract: A Tesla-Blumlein PFL-Bipolar pulsed power generator, has been successfully designed, manufactured and demonstrated. The compact Tesla transformer that it employs has successfully charged capacitive loads to peak voltages up to 0.6 MV with an overall energy efficiency in excess of 90%. The Tesla driven Blumlein PFL generator is capable of producing a voltage impulse approaching 0.6 MV with a rise time close to 2 ns, generating a peak electrical power of up to 10 GW for 5 ns when connected to a 30 Ω resistive load. Potentially for medical application, a bipolar former has been designed and successfully implemented as an extension to the system and to enable the generation of a sinusoid-like voltage impulse with a peak-to-peak value reaching 650 kV and having a frequency bandwidth beyond 1 GHz. This thesis describes the application of various numerical techniques used to design a successful generator, such as filamentary modelling, electrostatic and transient (PSpice) circuit analysis, and Computer Simulation Technology (CST) simulation. All the major parameters of both the Tesla transformer, the Blumlein pulse forming line and the bipolar former were determined, enabling accurate modelling of the overall unit to be performed. The wide bandwidth and ultrafast embedded sensors used to monitor the dynamic characteristics of the overall system are also presented. Experimental results obtained during this major experimental programme are compared with theoretical predictions and the way ahead towards connecting to an antenna for medical application is considered.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
Sponsor: none
URI: https://dspace.lboro.ac.uk/2134/22802
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2016-Wang.pdf5.55 MBAdobe PDFView/Open
Form-2016-Wang.pdf935.63 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.