Loughborough University
Browse
Cheraghi_et_al-2016-Water_Resources_Research.pdf (1.45 MB)

Hysteretic sediment fluxes in rainfall-driven soil erosion: particle size effects

Download (1.45 MB)
journal contribution
posted on 2016-11-11, 14:28 authored by Mohsen Cheraghi, Seifeddine Jomaa, Graham SanderGraham Sander, D. Andrew Barry
A detailed laboratory study was conducted to examine the effects of particle size on hysteretic sediment transport under time-varying rainfall. A rainfall pattern composed of seven sequential stepwise varying rainfall intensities (30, 37.5, 45, 60, 45, 37.5 and 30 mm h−1), each of 20-mins duration, was applied to a 5-m × 2-m soil erosion flume. The soil in the flume was initially dried, ploughed to a depth of 20 cm and had a mechanically smoothed surface. Flow rates and sediment concentration data for seven particle size classes (< 2, 2-20, 20-50, 50-100, 100-315, 315-1000 and > 1000 µm) were measured in the flume effluent. Clockwise hysteresis loops in the sediment concentration versus discharge curves were measured for the total eroded soil and the finer particle sizes (< 2, 2-20 and 20-50 µm). However, for particle sizes greater than 50 µm, hysteresis effects decreased and suspended concentrations tended to vary linearly with discharge. The Hairsine and Rose (HR) soil erosion model agreed well with the experimental data for the total eroded soil and for the finer particle size classes (up to 50 µm). For the larger particle size classes, the model provided reasonable qualitative agreement with the measurements although the fit was poor for the largest size class (> 1000 µm). Overall, it is found that hysteresis varies amongst particle sizes and that the predictions of the HR model are consistent with hysteretic behavior of different sediment size classes.

Funding

Financial support was provided by the Swiss National Science Foundation (200021_144320).

History

School

  • Architecture, Building and Civil Engineering

Published in

Water Resources Research

Volume

52

Issue

11

Pages

8613 - 8629

Citation

CHERAGHI, M. ... et al, 2016. Hysteretic sediment fluxes in rainfall-driven soil erosion: particle size effects. Water Resources Research, 52 (11), pp.8613-8629.

Publisher

© American Geophysical Union (AGU)

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2016-10-23

Publication date

2016-11-12

Notes

This paper was accepted for publication in the journal Water Resources Research and the definitive published version is available at http://dx.doi.org/10.1002/2016WR019314.

ISSN

0043-1397

eISSN

1944-7973

Language

  • en