Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23146

Title: Towards a UK co-operative for the advancement of quantum technology
Authors: Bjergstrom, Kieran N.
Cross, Trevor
Dwyer, Vincent M.
Everitt, Mark J.
Henshaw, Michael
John, Paul
Lemon, Jack
Lobo, Leon M.
Murray, Richard
Paul, Doug
Pritchard, Jonathan
Ralph, J.F.
Till, Stephen
Wrigley, Craig
Issue Date: 2016
Citation: BJERGSTROM, K.N. ...et al., 2016. Towards a UK co-operative for the advancement of quantum technology.
Abstract: The meeting was the fourth in DSTL's series of community meetings and had a Systems Engineering theme – recognising the increasing importance of this topic for many in the Quantum Technology (QT) community. There is a growing recognition that, although there are significant research challenges associated with realising the commercial and societal benefits anticipated from quantum technologies, there are also other challenges which concern the physical, commercial, societal and regulatory environments into which these new technologies will be integrated. Similar difficulties have been faced and overcome by the information and communications industry. One of the striking characteristics of this sector over the past 20 years has been the speed at which advances in semiconductor technology have been exploited by industry. Each new generation of semiconductor devices has led to new system designs and to new user capabilities which represented a major advance upon the systems and capabilities that came before them. However, to achieve this required a large number of different components and tools to become available at the right time, and at an affordable price. The routine achievement of this is evidence of how companies and institutions within the sector have been able to communicate effectively and establish a high level of collaboration, whilst still maintaining intense competition at the product level. QT is very different to the semiconductor industry. While a number of target applications exist the discipline is very much in its infancy. At one end of the spectrum, there are some applications in communications and sensors that are relatively close to market, and, at the other end, there are some applications in computing and simulation that are still far from market. Many choices of enabling technologies and materials have yet to be fixed, and there is, as yet, very little first-hand experience of the problems that will arise when companies seek to establish repeatable manufacture of quantum components and systems. What can we learn from the International Technology Roadmap for Semiconductors (ITRS) that might benefit the Quantum Technology community? Generating an additional quantum roadmap would merely duplicate previous work – but establishing a small number of cross-community working groups might be a way to assist UK industry to gain a competitive edge in the application of quantum technologies, without duplicating the existing activities by other bodies such as InnovateUK, British Standards Institution (BSI), European Telecommunications Standards Institute (ETSI), Defence Science and Technology Laboratory (Dstl) etc. This document reports on discussions held at the meeting around this question and, leveraging this input, seeks to provide clear and appropriate recommendations to the UK QT community.
Description: A Report on the Outcomes of the DSTL Defence & Security Quantum Community Meeting, September 2015 Loughborough University, UK - a contribution to the UK National Quantum Technology Programme
Version: Published
DOI: 10.13140/RG.2.2.25922.38087
URI: https://dspace.lboro.ac.uk/2134/23146
Appears in Collections:Official Reports (Physics)

Files associated with this item:

File Description SizeFormat
CoFAQT.pdfPublished version115.57 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.