Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23164

Title: Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends
Authors: Qiu, Tianyang
Song, Mo
Zhao, Liguo
Keywords: PLA/PBS blends
Mixing
Mechanical properties
Crystallization
Viscoplastic
Issue Date: 2016
Publisher: SpringerOpen
Citation: QIU, T., SONG, M. and ZHAO, L., 2016. Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mechanics of Advanced Materials and Modern Processes, 2(7).
Abstract: Background Significant amount of research, both experimental and numerical, has been conducted to study the mechanical behaviour of biodegradable polymer PL(L)A due to its wide range of applications. However, mechanical brittleness or poor elongation of PL(L)A has limited its applications considerably, particularly in the biomedical field. This study aims to study the potential in improving the ductility of PLA by blending with PBS in varied weight ratios. Methods The preparation of PLA and PBS blends, with various weight ratios, was achieved by melting and mixing technique at high temperature using HAAKE™ Rheomix OS Mixer. Differential Scanning Calorimetry (DSC) was applied to investigate the melting behaviour, crystallization and miscibility of the blends. Small dog-bone specimens, produced by compression moulding, were used to test mechanical properties under uniaxial tension. Moreover, an advanced viscoplastic model with nonlinear hardening variables was applied to simulate rate-dependent plastic deformation of PLA/PBS blends, with model parameters calibrated simultaneously against the tensile test data. Results Optical Microscopy showed that PBS composition aid with the crystallization of PLA. The elongation of PLA/PBS blends increased with the increase of PBS content, but with a compromise of tensile modulus and strength. An increase of strain rate led to enhanced stress response, demonstrating the time-dependent deformation nature of the material. Model simulations of time-dependent plastic deformation for PLA/PBS blends compared well with experimental results. Conclusions The crystallinity of PLA/PBS blends increased with the addition of PBS content. The brittleness of pure PLA can be improved by blending with ductile PBS using mechanical mixing technique, but with a loss of stiffness and strength. The tensile tests at different strain rates confirmed the time-dependent plastic deformation nature of the blends, i.e., viscoplasticity, which can be simulated by the Chaboche viscoplastic model with nonlinear hardening variables.
Description: This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Version: Accepted for publication
DOI: 10.1186/s40759-016-0014-9
URI: https://dspace.lboro.ac.uk/2134/23164
Publisher Link: http://dx.doi.org/10.1186/s40759-016-0014-9
ISSN: 2198-7874
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Zhao_art_10.1186_s40759-016-0014-9.pdfPublished version1.87 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.