Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/2325

Title: On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two
Authors: Salagean, A.M.
Keywords: k-error linear complexity
Linear complexity
Repeated-root codes
Stream cipher
Issue Date: 2005
Publisher: © IEEE Transactions on Information Theory Society
Citation: SALAGEAN, A.M., 2005. On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two. IEEE transactions on information theory 51 (3) ,pp. 1145-1150
Abstract: The linear Games-Chan algorithm for computing the linear complexity c(s) of a binary sequence s of period ℓ = 2n requires the knowledge of the full sequence, while the quadratic Berlekamp-Massey algorithm only requires knowledge of 2c(s) terms. We show that we can modify the Games-Chan algorithm so that it computes the complexity in linear time knowing only 2c(s) terms. The algorithms of Stamp-Martin and Lauder-Paterson can also be modified, without loss of efficiency, to compute analogues of the k-error linear complexity for finite binary sequences viewed as initial segments of infinite sequences with period a power of two. We also develop an algorithm which, given a constant c and an infinite binary sequence s with period ℓ = 2n, computes the minimum number k of errors (and the associated error sequence) needed over a period of s for bringing the linear complexity of s below c. The algorithm has a time and space bit complexity of O(ℓ). We apply our algorithm to decoding and encoding binary repeated-root cyclic codes of length ℓ in linear, O(ℓ), time and space. A previous decoding algorithm proposed by Lauder and Paterson has O(ℓ(logℓ)2) complexity.
Description: This article was published in the journal, [© IEEE transactions on information theory society] and is also available at: http://ieeexplore.ieee.org/servlet/opac?punumber=18
URI: https://dspace.lboro.ac.uk/2134/2325
ISSN: 0018-9448
Appears in Collections:Published Articles (Computer Science)

Files associated with this item:

File Description SizeFormat
IEEE-k-error-salagean-revised2.pdf145.94 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.