Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23257

Title: An experimental investigation into DEF dosing strategies for heavy duty vehicle applications
Authors: Gaynor, Paul D.
Reid, Benjamin A.
Hargrave, Graham K.
Lockyer, Thomas O.
Wilson, Jonathan
Issue Date: 2015
Publisher: © SAE International
Citation: GAYNOR, P. ...et al., 2015. An experimental investigation into DEF dosing strategies for heavy duty vehicle applications. SAE International Journal of Engines, 8(3), pp. 1196-1206.
Abstract: Copyright © 2015 SAE International.In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh<sup>−1</sup> NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions. High-speed and laser sheet imaging have been applied to capture the injection event and analyse spray development within the flows. Results from ambient shadowgraphy show the extent of variation in spray structure that exists between the systems; further quantified with droplet size distribution data collected using phase Doppler interferometry (PDI). Imaging within the exhaust section indicates that the structure of a spray has a significant impact on droplet entrainment within the flow, in turn affecting the level of spray-wall impingement seen. This suggests knowledge of dosing strategy will be critical for optimal system design and enabling near future dosing rate demands to be met.
Description: Copyright © 2015 SAE International. This paper is posted on this site with permission from SAE International, and is for viewing only. Further use or distribution of this paper is not permitted without permission from SAE.
Version: Published
DOI: 10.4271/2015-01-1028
URI: https://dspace.lboro.ac.uk/2134/23257
Publisher Link: http://dx.doi.org/10.4271/2015-01-1028
ISSN: 1946-3936
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Hargrave_2015-01-1028.pdfPublished version5.53 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.