Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23259

Title: Soldering interconnects through self-propagating reaction process
Authors: Zhu, Wenbo
Keywords: Self-propagating reaction
Reactive bonding
Soldering condition
Non-equilibrium soldering
Interfacial reaction
Cross-sectional microstructure
Reliability
Mechanical integrity
Influencing factors
High-temperature aging
Issue Date: 2016
Publisher: © Wenbo Zhu
Abstract: This thesis presents a research into the solder interconnects made through the reactive bonding process based on the self-propagating reaction. A numerical study of soldering conditions in the heat affected zone (HAZ) during bonding was initially carried out in order to understand the self-propagating reactive bonding and the related influencing factors. This was subsequently followed by an extensive experimental work to evaluate the feasibility and reliability of the reactive bonding process to enable the optimisation of processing parameters, which had provided a detailed understanding in terms of interfacial characteristics and bonding strengths. In addition, by focusing on the microstructure of the bonds resulted from the self-propagating reactions, the interfacial reactions and microstructural evolution of the bonded structures and effects of high-temperature aging were studied in details and discussed accordingly. To study the soldering conditions, a 3D time-dependent model is established to describe the temperature and stress field induced during self-propagating reactions. The transient temperature and stress distribution at the critical locations are identified. This thus allows the prediction of the melting status of solder alloys and the stress concentration points (weak points) in the bond under certain soldering conditions, e.g. ambient temperature, pressure, dimension and type of solder materials. Experimentally, the characterisation of interconnects bonded using various materials under different technical conditions is carried out. This ultimately assists the understanding of the feasibility, reliability and failure modes of reactive bonding technique, as well as the criteria and optimisation to form robust joints. The formation of phases such as intermetallic compounds (IMCs) and mechanism of interfacial reactions during reactive bonding and subsequent aging are elaborated. The composition, dimension, distribution of phases have been examined through cross-sectional observations. The underlying temperature and stress profile determining the diffusion, crystallization and growth of phases are defined by numerical predictions. XXI Through the comparative analysis of the experimental and numerical results, the unique phases developed in the self-propagating joints are attributed to the solid-liquid-convective diffusion, directional solidification and non-equilibrium crystallization. The recrystallization and growth of phases during aging are revealed to be resulted from the solid-state diffusion and equilibration induced by the high-temperature heating. In conclusion, the interfacial reactions and microstructural evolution of interconnect developed through self-propagating reactive bonding are studied and correlated with the related influencing factors that has been obtained from these predictions and experiments. The results and findings enable the extensive uses of self-propagating reactive bonding technology for new design and assembly capable of various applications in electronic packaging. It also greatly contributes to the fundamentals of the crystallization and soldering mechanism of materials under the non-equilibrium conditions.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
Sponsor: The 7th European Community Framework Program, No. PIRSES-GA-2010-269113, entitled Micro-Multi-Material Manufacture to Enable Multifunctional Miniaturized Devices (M6).
URI: https://dspace.lboro.ac.uk/2134/23259
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2016-Zhu.pdf11.98 MBAdobe PDFView/Open
Form-2016-Zhu.pdf1.15 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.