Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23495

Title: Dynamics of a thin film flowing down a heated wall with finite thermal diffusivity
Authors: Dallaston, Michael C.
Tseluiko, Dmitri
Kalliadasis, Serafim
Issue Date: 2016
Publisher: © American Physical Society
Citation: DALLASTON, M., TSELUIKO, D. and KALLIADASIS, S., 2016. Dynamics of a thin film flowing down a heated wall with finite thermal diffusivity. Physical Review Fluids, 1, 073903. DOI: 10.1103/PhysRevFluids.1.073903
Abstract: Consider the dynamics of a thin film flowing down a heated substrate. The substrate heating generates a temperature distribution on the free surface, which in turn induces surface-tension gradients and corresponding thermocapillary stresses that affect the free surface and therefore the fluid flow. We study here the effect of finite substrate thermal diffusivity on the film dynamics. Linear stability analysis of the full Navier-Stokes and heat transport equations indicates if the substrate diffusivity is sufficiently small, the film becomes unstable at a finite wavelength and at a Reynolds number smaller than that predicted in the long-wavelength limit. This property is captured in a reduced-order system of equations derived using a weighted-residual integral-boundary-layer method. This reduced-order model is also used to compute the bifurcation diagrams of solution branches connecting the trivial flat film to travelingwaves including solitary pulses. The effect of finite diffusivity is to separate a simultaneous Hopf-transcritical bifurcation into its individual component bifurcations. The appropriate Hopf bifurcation then connects only to the solution branch of negative-hump pulses, with wave speed less than the linear wave speed, while the branch of positive-single-hump pulses merges with the branch of positive-two-hump pulses at a supercritical Reynolds number. In the regime where finite-wavelength instability occurs, there exists a Hopf-bifurcation pair connected by a branch of periodic solutions, whose period cannot be increased indefinitely. Numerical simulation of the reduced-order system shows the development of a train of coherent structures, each of which resembles a stationary positive-hump pulse, and, in the regime of finite-wavelength instability, wavelength selection and saturation to periodic traveling waves.
Sponsor: We acknowledge financial support from the Engineering and Physical Sciences Research Council of the UK through Grants No. EP/K008595/1 and No. EP/L020564/1. The work of D.T. was partly supported by EPSRC Grant No. EP/K041134/1.
Version: Accepted for publication
DOI: 10.1103/PhysRevFluids.1.073903
URI: https://dspace.lboro.ac.uk/2134/23495
Publisher Link: http://dx.doi.org/10.1103/PhysRevFluids.1.073903
ISSN: 2469-990X
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
Accepted_Manuscript.pdfAccepted version643.73 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.