Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23563

Title: Impact of a cooled cooling air system on the external aerodynamics of a gas turbine combustion system
Authors: Walker, Alastair Duncan
Koli, Bharat R.
Guo, Liang
Beecroft, Peter
Zedda, Marco
Keywords: Aerodynamics
Cooling
Combustion systems
Gas turbines
Diffusers
Pipes
Engines
Compressors
Combustion chambers
Pressure
Issue Date: 2017
Publisher: © ASME
Citation: WALKER, A.D. ... et al, 2017. Impact of a cooled cooling air system on the external aerodynamics of a gas turbine combustion system. Journal of Engineering for Gas Turbines and Power, 139 (5), article no. 051504
Abstract: To manage the increasing turbine temperatures of future gas turbines a cooled-cooling air system has been proposed. In such a system some of the compressor efflux is diverted for additional cooling in a heat exchanger located in the by-pass duct. The cooled air must then be returned, across the main gas path, to the engine core for use in component cooling. One option is do this within the combustor module and two methods are examined in the current paper; via simple transfer pipes within the dump region or via radial struts in the pre-diffuser. This paper presents an experimental investigation to examine the aerodynamic impact these have on the combustion system external aerodynamics. This included the use of a fully annular, isothermal test facility incorporating a bespoke 1.5 stage axial compressor, engine representative outlet guide vanes, pre-diffuser and combustor geometry. Area traverses of a miniature five-hole probe were conducted at various locations within the combustion system providing information on both flow uniformity and total pressure loss. The results show that, compared to a datum configuration, the addition of transfer pipes had minimal aerodynamic impact in terms of flow structure, distribution and total pressure loss. However, the inclusion of pre-diffuser struts had a notable impact increasing the pre-diffuser loss by a third and consequently the overall system loss by an unacceptable 40%
Description: This paper is closed access until 10th January 2018.
Sponsor: The research leading to these results was undertaken as part of two separate projects: • The IMPACT_AE project (Intelligent Design Methodologies for Low Pollutant Combustors for Aero-Engines), co-funded by Rolls-Royce plc. and the European Commission within the 7th Framework Program (FP7-265586). • The SILOET II (Strategic Investment in Low-carbon Engine Technology) Project 18 - Future Core Engine Systems, co-funded by Rolls-Royce plc. and Innovate UK (Project Reference 113010).
Version: Accepted for publication
DOI: 10.1115/1.4035228
URI: https://dspace.lboro.ac.uk/2134/23563
Publisher Link: http://dx.doi.org/10.1115/1.4035228
ISSN: 0742-4795
Appears in Collections:Closed Access (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
Impact of a Cooled Cooling Air System on the External Aerodynamics of a Gas Turbine Combustion System - 2016 - Walker et al - Accepted Manuscript.pdfAccepted version3.39 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.