Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23848

Title: Performance and durability of broadband antireflection coatings for thin film CdTe solar cells
Authors: Womack, Gerald
Kaminski, Piotr M.
Abbas, Ali
Isbilir, Kenan
Gottschalg, Ralph
Walls, Michael
Issue Date: 2017
Publisher: American Vacuum Society © Author(s)
Citation: WOMACK, G. ... et al., 2017. Performance and durability of broadband antireflection coatings for thin film CdTe solar cells. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 35 (2), paper no.021201; doi: 10.1116/1.4973909
Abstract: Light reflection from the glass surface of a photovoltaic (PV) module is a significant source of energy loss for all types of PV devices. The reflection at the glass and air interface accounts for 4% of the total energy. Single layer antireflection coatings with sufficiently low refractive index have been used, such as those using magnesium fluoride or porous silica, but these are only effective over a narrow range of wavelengths. In this paper, the authors report on the design, deposition, and testing of multilayer broadband antireflection coatings. These coatings reduce the weighted average reflection over the wavelength range used by thin film CdTe devices to just 1.22%, resulting in a 3.6% relative increase in device efficiency. The authors have used multilayer stacks consisting of silica and zirconia layers deposited using reactive magnetron sputtering. Details of the stack design, sputter deposition process parameters, and the optical and microstructural properties of the layers are provided. Antireflection coatings on glass exposed to the outdoors must not degrade over the lifetime of the module. A comprehensive set of accelerated environmental durability tests has been carried out in accordance with IEC 61646 PV qualification tests. The durability tests confirmed no damage to the coatings or performance drop as a result of thermal cycling or damp heat. All attempts to perform pull tests resulted in either adhesive or substrate failure, with no damage to the coating itself. The coatings also passed acid attack tests. Scratch resistance, abrasion resistance, and adhesion tests have also been conducted. The optical performance of the coatings was monitored during these tests, and the coatings were visually inspected for any sign of mechanical failure. These tests provide confidence that broadband antireflection coatings are highly durable and will maintain their performance over the lifetime of the solar module. All dielectric metal-oxide multilayer coatings have better optical performance and superior durability compared with alternative single layer porous sol–gel coatings. Thin film CdTe devices are particularly problematic because the antireflection coating is applied to one side of the glass, while device layers are deposited directly on to the opposite glass surface in the superstrate configuration. In thin film CdTe production, the glass is exposed to high temperature processes during the absorber deposition and the cadmium chloride activation treatment. If glass precoated with a broadband antireflection coating is to be used, then the coating must withstand temperatures of up to 550 C. Surprisingly, our studies have shown that multilayer silica/zirconia antireflection coatings on soda lime glass remain unaffected by temperatures reaching 600 C, at which point mild crazing is observed. This is an important observation, demonstrating that low cost glass, which is preprocessed with a broadband antireflection coating, is directly useable in thin film CdTe module production.
Description: © 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Sponsor: The authors are grateful to UKERC for funding this work through the EPSRC Supergen SuperSolar Hub (EP/J017361/ 1 and EP/M014797/1). One of the authors (G.W.) is grateful to NSIRC, Ltd., for supporting a CASE studentship. The authors are also grateful to W. Sampath and K. Barth of Colorado State University for the thin film CdTe cell used in Fig. 5.
Version: Published
DOI: 10.1116/1.4973909
URI: https://dspace.lboro.ac.uk/2134/23848
Publisher Link: http://dx.doi.org/10.1116/1.4973909
ISSN: 0734-2101
Appears in Collections:Published Articles (CREST)

Files associated with this item:

File Description SizeFormat
1%2E4973909.pdfPublished version1.55 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.