Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/23969

Title: Optical optimization of perovskite solar cell structure for maximum current collection
Authors: Kaminski, Piotr M.
Isherwood, Patrick J.M.
Womack, Gerald
Walls, Michael
Keywords: Thin-film
Perovskite
Solar cell
Anti-reflection coating
Photo current
Issue Date: 2016
Publisher: © The Authors. Published by Elsevier Ltd
Citation: KAMINSKI, P.M. ...et al., 2016. Optical optimization of perovskite solar cell structure for maximum current collection. Energy Procedia, 102, pp. 11-18.
Abstract: High conversion efficiency has been recently demonstrated for Perovskite thin film photovoltaic devices. Perovskite thin film solar cells are multilayer opto-electrical structures in which light interference occurs. This phenomenon can be used to maximise the light transmission into the absorber material and increase the device efficiency. Fine tuning of the layer thicknesses within the stack can be used to control interference at the interfaces. Optical reflection losses can be reduced by achieving destructive interference within the structure of the cell. The light transmission to the Perovskite absorber of a thin film solar cell on a fluorine doped tin oxide transparent conductor has been modelled using the transfer matrix method. Alternative transparent conductor materials have been also investigated including AZO and ITO. The modelling showed that replacing FTO with ITO could increase the photocurrent by as much as 4.5%. The gain can be further increased to 6.5% by using AZO as the TCO material. Fine tuning of the TiO2 layer thickness can increase the current density by 0.3%. Furthermore, the current density of a Perovskite solar cell can be increased by application of a multilayer anti-reflective coating by another 3.5%. Optical optimisation of the stack design offers a significant increase in conversion efficiency.
Description: This paper was presented at the E-MRS Spring Meeting 2016 Symposium T - Advanced materials and characterization techniques for solar cells III, 2-6 May 2016, Lille, France. This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution Non Commercial-No Derivatives 4.0 Unported Licence (CC BY-NC-ND). Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-nd/4.0/
Version: Published
DOI: 10.1016/j.egypro.2016.11.312
URI: https://dspace.lboro.ac.uk/2134/23969
Publisher Link: http://dx.doi.org/10.1016/j.egypro.2016.11.312
ISSN: 1876-6102
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
2016 Energy Procedia session 7 EMRS2016SpringSympT_Kaminski JMW.pdfPublished version923.95 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.