Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/2434

Title: A new approach to potential fitting using neural networks
Authors: Bholoa, Ajeevsing
Kenny, Steven D.
Smith, Roger
Keywords: Neural network
Empirical potentials
Issue Date: 2007
Publisher: © Elsevier
Citation: BHOLOA, A., KENNY, S.D. and SMITH, R., 2007. A new approach to potential fitting using neural networks. Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms, 255 (1), pp. 1-7 [doi:10.1016/j.nimb.2006.11.040]
Abstract: A methodology is presented for developing transferable empirical potential functions without following the usual procedure of postulating a functional form. Instead, a neural network (NN) is employed to learn the functional relationships of potential energy surfaces from the local geometric arrangement of atoms. The methodology is illustrated by training the NN model on tens of thousands of individual data points derived from the tight-binding (TB) method for a wide range of silicon systems including both small clusters and bulk structures. Comparisons of the potential’s properties with experimental data, quantum methods and other Si potentials have been made. The NN model successfully fitted energy variations of the different test cases as a function of bond distances, bond angles, lattice constants and elastic properties for both equilibrium and non-equilibrium small cluster and bulk structures. This indicates a robust and consistent methodology for fitting empirical potentials which can be applied to a wide range of materials independent of the type of bonding or their crystal structure.
Description: This article has been accepted for publication in the journal, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms [© Elsevier] and the definitive version is available at: http://www.sciencedirect.com/science/journal/0168583X
URI: https://dspace.lboro.ac.uk/2134/2434
ISSN: 0168-583X
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
COSIRES.pdf812.71 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.