Loughborough University
Browse
lno10512.pdf (741.04 kB)

The historical dependency of organic carbon burial efficiency

Download (741.04 kB)
journal contribution
posted on 2017-04-12, 11:00 authored by Alan D. Radbourne, David RyvesDavid Ryves, Nicholas John AndersonNicholas John Anderson, Daniel R. Scott
Many studies have viewed lakes as quasi-static systems with regard to the rate of organic carbon (OC) burial, assuming that the dominant control on BE is sediment mineralization. However, in systems undergoing eutrophication or oligotrophication (i.e., altered nutrient loading), or climatic forcing, the changes in primary production will vary on both longer (> 10 yr) and shorter (seasonal) timescales, influencing the rate of OC accumulation and subsequent permanent burial. Here, we consider the extent to which permanent OC burial reflects changing production in a deep monomictic lake (Rostherne Mere, UK) that has been culturally eutrophied (present TP>200 μg L-1), but has undergone recent reductions in nutrient loading. We compare multi-year dynamics of OC fluxes using sediment traps to longer-term burial rates estimated from two 210Pb-dated sediment cores. The recent sediment record demonstrates that most of the autochthonous OC is preserved (∼95% of OC captured in the deep trap and 86% of the NEP in the contemporary system), contrary to widely held assumptions that this more labile, algal-dominated OC component is not well preserved in lake sediments. A revised method for calculating BE for lakes which have undergone changes in primary productivity in recent decades is developed, which reduces some of problems inherent in existing approaches using historical sediment records averaged over the last 25-150 yr. We suggest that an appreciation of lakes in all biomes as ecosystems responding dynamically to recent human impact and climate change (for example) can improve up-scaled regional and global estimates of lake OC burial.

Funding

This work was supported by the Natural Environment Research Council (NERC) [grant number NE/L002493/1] and ADR acknowledges the support of the Research Studentship Award from Central England NERC Training Alliance (CENTA). Furthermore, some data in this study was funded through a NERC small grant [grant number NE/H011978/1]. Additionally, we thank the UKLEON network for providing access to the monitoring station data [NERC small grant number NE/I007261/1].

History

Department

  • Geography and Environment

Published in

Limnology and Oceanography

Volume

62

Issue

4

Pages

1480-1497

Citation

RADBOURNE, A.D. ... et al, 2017. The historical dependency of organic carbon burial efficiency. Limnology and Oceanography, 62 (4), pp. 1480-1497.

Publisher

Wiley on behalf of the Association for the Sciences of Limnology and Oceanography (ASLO). © The Authors

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

2016-12-17

Publication date

2017-03-09

Copyright date

2017

Notes

This is an Open Access Article. It is published by Wiley on behalf of the Association for the Sciences of Limnology and Oceanography under the Creative Commons Attribution 4.0 International Licence (CC BY). Full detals of this licence are available at: http://creativecommons.org/licenses/by/4.0

ISSN

0024-3590

eISSN

1939-5590

Language

  • en

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC