Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/24791

Title: Interlayer vacancy defects in AA-stacked bilayer graphene: Density functional theory predictions
Authors: Vuong, A.
Trevethan, T.
Latham, Chris
Ewels, C.P.
Erbahar, D.
Briddon, P.R.
Rayson, M.J.
Heggie, Malcolm
Issue Date: 2017
Publisher: © IOP Publishing
Citation: VUONG, A. ...et al., 2017. Interlayer vacancy defects in AA-stacked bilayer graphene: Density functional theory predictions. Journal of Physics Condensed Matter, 29: 155304.
Abstract: © 2017 IOP Publishing Ltd.AA-stacked graphite and closely related structures, where carbon atoms are located in registry in adjacent graphene layers, are a feature of graphitic systems including twisted and folded bilayer graphene, and turbostratic graphite. We present the results of ab initio density functional theory calculations performed to investigate the complexes that are formed from the binding of vacancy defects across neighbouring layers in AA-stacked bilayers. As with AB stacking, the carbon atoms surrounding lattice vacancies can form interlayer structures with sp 2 bonding that are lower in energy than in-plane reconstructions. The sp 2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp 2 bonded 'wormhole' or tunnel defect between the layers. We also identify a new class of 'mezzanine' structure characterised by sp 3 interlayer bonding, resembling a prismatic vacancy loop. The V 6 hexavacancy variant, where six sp 3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA-stacked layers. Our focus is on vacancy generation and aggregation in the absence of extreme temperatures or intense beams.
Description: This is an author-created, un-copyedited version of an article published in Journal of Physics: Condensed Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-648X/aa5f93.
Sponsor: A Vuong, M I Heggie and C D Latham thank EDF Energy Generation Ltd for financial support. T Trevethan thanks Innovate UK project The influence of graphite irradiation creep on plant life optimisation (24792-167222) for financial support.
Version: Accepted for publication
DOI: 10.1088/1361-648X/aa5f93
URI: https://dspace.lboro.ac.uk/2134/24791
Publisher Link: http://dx.doi.org/10.1088/1361-648X/aa5f93
ISSN: 0953-8984
Appears in Collections:Published Articles (Chemistry)

Files associated with this item:

File Description SizeFormat
vuong-final.pdfAccepted version471.08 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.