Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/24831

Title: Modeling complex flow structures and drag around a submerged plant of varied posture
Authors: Boothroyd, Richard J.
Hardy, Richard J.
Warburton, Jeff
Marjoribanks, Timothy I.
Issue Date: 2017
Publisher: American Geophysical Union © The Authors
Citation: BOOTHROYD, R.J., 2017. Modeling complex flow structures and drag around a submerged plant of varied posture. Water Resources Research, 53 (4), pp. 2877–2901.
Abstract: Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000–110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance.
Description: This is an Open Access Article. It is published by the American Geophysical Union under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Sponsor: Richard J. Boothroyd was funded under Natural Environmental Research Council (NERC) PhD Studentship 1313876. The flume experiments were funded through NERC grant NE/F010060/1.
Version: Published
DOI: 10.1002/2016WR020186
URI: https://dspace.lboro.ac.uk/2134/24831
Publisher Link: http://dx.doi.org/10.1002/2016WR020186
ISSN: 0043-1397
Appears in Collections:Published Articles (Architecture, Building and Civil Engineering)

Files associated with this item:

File Description SizeFormat
Boothroyd_et_al-2017-Water_Resources_Research.pdfPublished version2.25 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.