Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/24943

Title: A miniaturized bioreactor system for the evaluation of cell interaction with designed substrates in perfusion culture
Authors: Sun, Tao
Donoghue, Peter S.
Higginson, J.R.
Gadegaard, Nikolaj
Barnett, Susan C.
Riehle, Mathis O.
Keywords: Miniaturized bioreactor
Perfusion culture
Astrocytes
Fibroblasts
Tissue engineering
Issue Date: 2012
Publisher: Wiley
Citation: SUN, T. ... et al, 2012. A miniaturized bioreactor system for the evaluation of cell interaction with designed substrates in perfusion culture. Journal of Tissue Engineering and Regenerative Medicine, 6 (S3), pp.s4-s14
Abstract: In tissue engineering, the chemical and topographical cues within three-dimensional (3D) scaffolds are normally tested using static cell cultures but applied directly to tissue cultures in perfusion bioreactors. As human cells are very sensitive to the changes of culture environment, it is essential to evaluate the performance of any chemical, and topographical cues in a perfused environment before they are applied to tissue engineering. Thus the aim of this research was to bridge the gap between static and perfusion cultures by addressing the effect of perfusion on cell cultures within 3D scaffolds. For this we developed a scale down bioreactor system, which allows to evaluate the effectiveness of various chemical and topographical cues incorporated into our previously developed tubular ε-polycaprolactone scaffold under perfused conditions. Investigation of two exemplary cell types (fibroblasts and cortical astrocytes) using the miniaturized bioreactor indicated that: (1) quick and firm cell adhesion in 3D scaffold was critical for cell survival in perfusion culture compared with static culture, thus cell seeding procedures for static cultures might not be applicable. Therefore it was necessary to re-evaluate cell attachment on different surfaces under perfused conditions before a 3D scaffold was applied for tissue cultures, (2) continuous medium perfusion adversely influenced cell spread and survival, which could be balanced by intermittent perfusion, (3) micro-grooves still maintained its influences on cell alignment under perfused conditions, while medium perfusion demonstrated additional influence on fibroblast alignment but not on astrocyte alignment on grooved substrates. This research demonstrated that the mini-bioreactor system is crucial for the development of functional scaffolds with suitable chemical and topographical cues by bridging the gap between static culture and perfusion culture.
Description: This is the peer reviewed version of the article, which has been published in final form at http://dx.doi.org/10.1002/term.510. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Version: Accepted version
DOI: 10.1002/term.510
URI: https://dspace.lboro.ac.uk/2134/24943
Publisher Link: http://dx.doi.org/10.1002/term.510
ISSN: 1932-6254
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
5.pdfAccepted version3.46 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.