Loughborough University
Browse
TGF b model 2010.PDF (1.21 MB)

Development of a three dimensional multiscale computational model of the human epidermis

Download (1.21 MB)
journal contribution
posted on 2017-05-12, 11:03 authored by Salem Adra, Tao SunTao Sun, Sheila MacNeil, Mike Holcombe, Rod Smallwood
Transforming Growth Factor (TGF-b1) is a member of the TGF-beta superfamily ligand-receptor network. and plays a crucial role in tissue regeneration. The extensive in vitro and in vivo experimental literature describing its actions nevertheless describe an apparent paradox in that during re-epithelialisation it acts as proliferation inhibitor for keratinocytes. The majority of biological models focus on certain aspects of TGF-b1 behaviour and no one model provides a comprehensive story of this regulatory factor’s action. Accordingly our aim was to develop a computational model to act as a complementary approach to improve our understanding of TGF-b1. In our previous study, an agent-based model of keratinocyte colony formation in 2D culture was developed. In this study this model was extensively developed into a three dimensional multiscale model of the human epidermis which is comprised of three interacting and integrated layers: (1) an agent-based model which captures the biological rules governing the cells in the human epidermis at the cellular level and includes the rules for injury induced emergent behaviours, (2) a COmplex PAthway SImulator (COPASI) model which simulates the expression and signalling of TGF-b1 at the sub-cellular level and (3) a mechanical layer embodied by a numerical physical solver responsible for resolving the forces exerted between cells at the multi-cellular level. The integrated model was initially validated by using it to grow a piece of virtual epidermis in 3D and comparing the in virtuo simulations of keratinocyte behaviour and of TGF-b1 signalling with the extensive research literature describing this key regulatory protein. This research reinforces the idea that computational modelling can be an effective additional tool to aid our understanding of complex systems. In the accompanying paper the model is used to explore hypotheses of the functions of TGF-b1 at the cellular and subcellular level on different keratinocyte populations during epidermal wound healing.

Funding

This work is part of the Epitheliome Project, which is funded by the Engineering and Physical Siences Research Council United Kingdom through two grants, one to the University of Sheffield (GR/S62321/01), and the other to the University of York (GR/S62338/01).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

PLoS ONE

Volume

5

Issue

1

Pages

e8511 - e8511

Citation

ADRA, S. ... et al, 2010. Development of a three dimensional multiscale computational model of the human epidermis. PLoS ONE, 5 (1), e8511

Publisher

Public Library of Science (© 2010 Adra et al.)

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2010

Notes

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

eISSN

1932-6203

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC