Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/24999

Title: A 3D-printed polymer micro-gripper with self-defined electrical tracks and thermal actuator
Authors: Alblalaihid, Khalid
Overton, J.K.
Lawes, Simon
Kinnell, Peter
Keywords: 3D-Printed
Thermal actuator
Issue Date: 2017
Publisher: © IOP Publishing
Citation: ALBLALAIHID, K. ...et al., 2017. A 3D-printed polymer micro-gripper with self-defined electrical tracks and thermal actuator. Journal of Micromechanics and Microengineering, 27 (4), 045019 [10 pp.]
Abstract: This paper presents a simple fabrication process that allows for isolated metal tracks to be easily defined on the surface of 3D printed micro-scale polymer components. The process makes use of a standard low cost conformal sputter coating system to quickly deposit thin film metal layers on to the surface of 3D printed polymer micro parts. The key novelty lies in the inclusion of inbuilt masking features, on the surface of the polymer parts, to ensure that the conformal metal layer can be effectively broken to create electrically isolated metal features. The presented process is extremely flexible, and it is envisage that it may be applied to a wide range of sensor and actuator applications. To demonstrate the process a polymer micro-scale gripper with an inbuilt thermal actuator is designed and fabricated. In this work the design methodology for creating the micro-gripper is presented, illustrating how the rapid and flexible manufacturing process allows for fast cycle time design iterations to be performed. In addition the compatibility of this approach with traditional design and analysis techniques such as basic finite element simulation is also demonstrated with simulation results in reasonable agreement with experimental performance data for the micro-gripper.
Description: Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Sponsor: This research was funded by the Engineering and Physical Sciences Research Council of the UK via the EPSRC Centre for Innovative Manufacturing in Intelligent Automation (grant EP/I033467/1).
Version: Published
URI: https://dspace.lboro.ac.uk/2134/24999
Publisher Link: https://doi.org/10.1088/1361-6439/aa631e
Related Resource: https://doi.org/10.1088/1361-6439/aa6de8
ISSN: 0960-1317
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Alblalaihid_2017_J._Micromech._Microeng._27_045019.pdfPublished version1.95 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.