Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25083

Title: Computational modelling of mechanical behavior of biological tissues for biomedical applications
Authors: Li, Simin
Liu, Yang
Du, Juan
Zeybek, Begum
Zani, Lorenzo
Lewis, Mark P.
Silberschmidt, Vadim V.
Keywords: Computational modelling
Biomedical applications
Issue Date: 2016
Publisher: European Community on Computational Methods in Applied Sciences (ECCOMAS)
Citation: LI, S. ...et al., 2016. Computational modelling of mechanical behavior of biological tissues for biomedical applications. IN: Papadrakakis, M. ...et al. (eds.) VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), Crete, June 5-10th, Vol 1, pp. 1940-1949.
Abstract: Computational modelling of biomedical applications has gained significant momentum in recent years, in part to meet demands related to recent technical advancements in manufacturing of personalized biomedical equipment. However, our understanding of mechanics of biological tissues, their properties and performance as well as their interaction with biomedical equipment still remains limited. This is a result of multiple factors, most important being a hierarchical and heterogeneous nature of biological tissues, non-trivial loading and environmental conditions to which they are exposed as well as multi-disciplinary nature of the systems involved. This paper presents an overview of the latest research activities and achievements in the area of mechanics of biomaterials and tissues at Loughborough University, UK. It covers various types of biological materials and tissues - both hard (bones) and soft (muscles, etc.) - that have been studied in previous studies [1-4] at various spatial and temporal domains. These studies laid a foundation for development and implementation of advanced computational modelling of mechanics of these biological tissues at different stages (healthy, diseased and traumatic conditions) and for several areas of biomedical applications (injury prevention, wound care and rehabilitation). Performed numerical simulations, on the one hand, elucidate processes of deformation of biological tissues and, on the other hand, provide solutions for design and optimization of medical and rehabilitation procedures and devices. This work underpins a unique partnership between engineers, clinics and rehabilitation centres in UK aiming to transfer the latest scientific and technological advancements into personalized biomedical applications using computational schemes and tools.
Description: This conference paper is published with kind permission of the conference organisers.
Version: Published version
URI: https://dspace.lboro.ac.uk/2134/25083
Publisher Link: http://www.eccomas.org/cvdata/cntr1/spc7/dtos/img/mdia/eccomas-2016-vol-1.pdf
ISBN: 9786188284401
Appears in Collections:Conference Papers and Presentations (Mechanical, Electrical and Manufacturing Engineering)
Conference Papers and Presentations (Sport, Exercise and Health Sciences)

Files associated with this item:

File Description SizeFormat


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.