Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25145

Title: Free energy of adsorption for a peptide at a liquid/solid interface via nonequilibrium molecular dynamics
Authors: Mijajlovic, M.
Penna, M.J.
Biggs, Mark J.
Issue Date: 2013
Publisher: © American Chemical Society (ACS)
Citation: MIJAJLOVIC, M., PENNA, M.J. and BIGGS, M.J., 2013. Free energy of adsorption for a peptide at a liquid/solid interface via nonequilibrium molecular dynamics. Langmuir, 29(9), pp. 2919-2926.
Abstract: Protein adsorption is of wide interest including in many technological applications such as tissue engineering, nanotechnology, biosensors, drug delivery, and vaccine production among others. Understanding the fundamentals of such technologies and their design would be greatly aided by an ability to efficiently predict the conformation of an adsorbed protein and its free energy of adsorption. In the study reported here, we show that this is possible when data obtained from nonequilibrium thermodynamic integration (NETI) combined with steered molecular dynamics (SMD) is subject to bootstrapping. For the met-enkephalin pentapeptide at a water-graphite interface, we were able to obtain accurate predictions for the location of the adsorbed peptide and its free energy of adsorption from around 50 and 80 SMD simulations, respectively. It was also shown that adsorption in this system is both energetically and entropically driven. The free energy of adsorption was also decomposed into that associated with formation of the cavity in the water near the graphite surface sufficient to accommodate the adsorbed peptide and that associated with insertion of the peptide into this cavity. This decomposition reveals that the former is modestly energetically and entropically unfavorable, whereas the latter is the opposite in both regards to a much greater extent. © 2013 American Chemical Society.
Description: This paper is in closed access.
Version: Published
DOI: 10.1021/la3047966
URI: https://dspace.lboro.ac.uk/2134/25145
Publisher Link: http://dx.doi.org/10.1021/la3047966
ISSN: 0743-7463
Appears in Collections:Closed Access (Chemistry)

Files associated with this item:

File Description SizeFormat
Biggs_la3047966 (as published).pdfPublished version3.14 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.